DATA TRANSMISSION

* Integrate and Dump Filter (Receiver):-
* The digital signal $x(t)$ is corrupted by white noise $n(t)$ during transmission over Channel.
* Such noisy signal $[x(t)+n(t)]$ is given to the input integrate and Dump filler.
* The capacitor is discharged fully at the beginning of the bit interval
* This is acheived temporarily closing switch Sw. at the beginning of the bit interval. Integrator integrates noisy input signal over one bit period.
* At the $t=T$. The value $r(t)$ reaches the maximum amplitude.
* The dump switch ${ }^{\text {www.FirstRanker.com }} \mathrm{S}_{2}$ is then closed momentarily to discharge the capacitor to receive next bit.
* The integrator integrates independent values of previous bit.
* (Thus integrator) This Shows detection in integrate and dump filter is uneffected by values of previous bits.
* Signal to Noise Ratio of the Integrator and Dump filter:-

This cit is a combination of integrator ξ low pass R_{c} crt to get base band slag receiver

The $0 / p$ is calculated by

$$
\begin{gathered}
r(t)=\int \text { input data }+\int \text { Noise } \\
x_{0}(t) \\
x_{0}(t)=1 / R C \int_{0}^{T} A d t \\
x_{0}(t)=\frac{A T}{R C}
\end{gathered}
$$

Paces of the signal $x(t)$ is given by

$$
\begin{gather*}
\text { Power }=V \cdot I=V-V / R=\frac{V^{2}}{R} \\
R=1 \Omega ; \text { power }=V^{2} \\
P_{\text {roc }}(t)(\text { power })=\left|\frac{A T}{R C}\right|^{2}=\left|\frac{A T}{\tau}\right|^{2} \tag{1}
\end{gather*}
$$

paves of the Sg of $n_{0}(t)$ is

$$
P_{\text {no }}(t)=\int_{-a}^{\infty} S(F) d F=\int_{-\infty}^{a}|H(F)|^{2} S_{n}(F) d F
$$

$$
H(F)=\frac{1-e^{-j \omega T}}{j \omega R C}
$$

Substitute these values in Pro (t)
Now H(F) is written as

$$
\begin{aligned}
& H(F)=\frac{1-e^{j \omega T}}{\rho \omega R C} \\
& =\frac{1-(\cos \omega t+j \sin \omega t)}{j \omega R C} \\
& =\frac{\sin \omega T}{\omega R C}+i / j\left[\frac{(1-\cos \omega t)}{j \omega R c}\right] \\
& =\frac{\sin \omega T}{\omega R C}-\frac{j(1-\cos \omega t)}{j \omega R c} \\
& |H(F)|^{2}=\left[\sqrt{\left[\frac{\sin \omega T}{\omega R c}\right]^{2}+\left[\frac{(1-\cos \omega T)}{R C \omega}\right]^{2}}\right]^{2} \\
& =\left[\frac{\sin \omega T}{\omega R c}\right]^{2}+\frac{\left(1+\cos ^{2} \omega T-2 \cos \omega T\right)}{\omega R c^{2}} \\
& =\frac{\sin ^{2} \omega \pi+\cos ^{2} \omega \pi+1-2 \cos \omega \pi}{(\omega R c)^{2}} \\
& =\frac{2(1-\cos \omega T)}{(\omega R C)^{2}} \\
& |H(F)|^{2}=\frac{2(1 \cdot \cos 2 \pi F T)}{(2 \pi F R C)^{2}} \\
& =\frac{q(2 \sin 2 \pi F T)}{4(\pi F R C)^{2}}
\end{aligned}
$$

So, from (1)

$$
\begin{aligned}
& P_{n_{0}}(t)=\int_{-\alpha}^{\alpha} \frac{\sin ^{2} A F F}{(\pi F T)^{2}} \frac{N_{0}}{2} d F \\
& =\frac{N_{0}}{2} \int_{-\alpha}^{\alpha} \frac{\sin ^{2} \pi F T}{(\pi F T)^{2}} \frac{T^{2}}{\tau^{2}} d F \\
& =\frac{N_{0}}{2} \frac{T^{2}}{\sim^{2}} \int_{-\infty}^{\alpha} \frac{\sin ^{2} \pi F T}{(\pi F T)^{2}} d F
\end{aligned}
$$

Let TFT $=x$.

$$
\begin{aligned}
& d F=1 / \pi F d x . \\
& S_{0} \Rightarrow P_{n_{0}}(t)=\frac{N_{0}}{2} \frac{T^{2}}{\tau^{2}} \int_{-\alpha}^{\alpha}\left(\frac{\sin x}{x}\right)^{2} \frac{1}{\pi T} d x . \\
& P_{n O}(t)=\frac{N_{0}}{2 \pi} \frac{T}{\tau^{2}} 2 \int_{0}^{a}\left(\frac{\sin x}{x}\right)^{2} d x \\
& \left.=\frac{N_{0}}{\not / \cdot x} \frac{T}{\tau_{2}} \cdot 2 \cdot \not / / 7\right] \\
& P_{n_{0}}(t)=\frac{N_{0} T}{2 \tau^{2}} \\
& \gamma(t)=x_{0}(t)+n_{0}(t) \\
& \gamma(t)=\left(\frac{A T}{\tau}\right)^{2}+\left(\frac{N_{0} T}{2 T^{2}}\right)
\end{aligned}
$$

we know that powes ration l.e signal to noise ratio

$$
\begin{aligned}
& S / N=(A T / \tau)^{2} / \frac{N O T}{2 \tau^{2}} \\
& S / N=\frac{A^{2} T^{2}}{T^{2}} \cdot \frac{2 T^{2}}{\text { Nwo }^{2} \text { FirstRanker.com }}
\end{aligned}
$$

* Optimum filter:-
* Now we will consider the generalized gaussian noise of zeno mean.
* Let us Assume that the Received signal is a binary waveform. Let's say that the polar NRZ signal is used to represent binary is and os.
for binary ' 1 ': $x_{1}(t)=t A \quad$ for one bit period T for binary $0^{\circ} ; x_{2}(t)=-A \quad$ for one bit period T
* Thus the input signal $x(t)$ will be either $x_{1}(t)$ or $x_{2}(t)$ depending upon the polarity of the NRZ signal.

Noise $n(t)$ added
over the channel
has ped of Snit (f).

* Noise $n(t)$ is added to the Signal $x(t)$ over the Channel during transmission
\because Input to the optimum filter is $x(t)+n(t)$ i.e., Input to the receiver $=x(t)+n(t)$
* In the absence of noise, decisions are taken clearly. But if noise is present then select $x_{1}(t)$ if $r(T)$ is closes to $x_{0_{1}}(T)$ than $x_{\mathrm{O}_{2}}(T)$ and select $x_{2}(t)$ if $r(T)$ is closes to $x_{\mathrm{O}_{2}(T)}$ than $x_{01}(T)$.
* Therefore the decision boundary will be midway between $x_{O_{1}}(T)$ and $x_{O_{2}}(T)$. It is given as,

$$
\text { Decision boundary }=\frac{x_{0_{1}}(T)+x_{\mathrm{O}_{2}}(T)}{2 .}
$$

* Probability of Error:-
we know
power output $r(t)=(A T / \tau)^{2}+\frac{\text { NoT }}{2 T^{2}}$
Signal op $\quad \gamma(t)=\frac{A T}{\tau}+\sqrt{\frac{N O T}{2 T^{2}}}$
$x(t)=A=1 \Rightarrow \gamma(t)>0 \Rightarrow 1$
$x(t)=A=0 \Rightarrow \gamma(t)<0 \Rightarrow 0$
error

$$
\begin{aligned}
d(t)=1 \Rightarrow 0 \text { if } A T / \tau<-n(t) \\
d(t)=0 \Rightarrow 1 \text { if AT/ } / \tau>n(t) \\
f(x)=\frac{1}{\sqrt{2 \pi \sigma}} e^{-\frac{(x-m)^{2}}{2 \sigma^{2}}}
\end{aligned}
$$

max $=0$

$$
\begin{aligned}
f(n(t)] & =\frac{1}{\sqrt{2 \pi t}} e^{-\frac{[n(t)-0]^{2}}{2 \sigma^{2}}} \\
& =\frac{1}{\sqrt{2 \pi \sigma}} e^{-\left(n(t)^{2}\right) / 2 \sigma^{2}}
\end{aligned}
$$

$$
=\left[\bar{x}^{2}-m x^{2}\right] \quad m x=0
$$

$r=\overline{x^{2}}$ [noise power square]

$$
\begin{aligned}
\overline{\bar{x}^{2}} & =\overline{N_{0}^{2}(t)}=\frac{N_{0 T}}{2 T^{2}} \\
\sigma & =\left[\frac{N_{0} T}{2 \tau^{2}}-0\right]^{1 / 2} \\
\sigma & =\sqrt{\frac{N_{0} T}{2 \tau^{2}}} \\
f(n(t)] & =\frac{1}{\sqrt{2 \pi}} \sqrt{\frac{2 T^{2}}{N T_{0}}} e^{-\frac{n^{2}(t)}{q /}\left(\frac{N O T}{\not 2 T^{2}}\right)} \\
& =\sqrt{\frac{2 \tau^{2}}{q \pi N O T}} e^{-\frac{n^{2}(t) \tau^{2}}{N_{0} T}} \\
f(n(t)] & =\frac{\tau}{\sqrt{\pi N O T}} e^{-\frac{n^{2}(t) \tau^{2}}{N_{0} T}}
\end{aligned}
$$

Graphical Representation:-

$$
\begin{aligned}
& \operatorname{Pe}[f(n(t)]=\int_{\frac{A T}{\alpha} F(n(t)] d(n(t))}^{\tau} \\
&=\int_{A T / \tau^{2}}^{\alpha} \frac{\tau}{\sqrt{N_{0} T \pi}} e^{-\frac{n^{2}(t) \tau^{2}}{N_{0} T}} d(n(t)) \\
& \uparrow f_{x}\left(n_{0}(t)\right)
\end{aligned}
$$

limits:

$$
\begin{aligned}
& n(t) \rightarrow a \Rightarrow y \rightarrow a \\
& n(t) \rightarrow A T / \tau \Rightarrow y=\frac{A T}{\sqrt{N O T}} \frac{\gamma^{\prime}}{\gamma} \\
& =A \sqrt{T / N_{0}} \\
& P_{e}=\int_{A \sqrt{T / N_{0}}}^{a} \frac{x^{2}}{\sqrt{N_{0} T \pi}} e^{-y^{2}} \sqrt{\frac{N_{0} T}{x}} d y \\
& =\frac{1}{\sqrt{\pi}} \int_{A \sqrt{\pi} / N_{0}}^{\alpha} e^{-y^{2}} d y \\
& =\frac{1}{2}\left[\frac{2}{\sqrt{\pi}} \int_{A \sqrt{T} / N_{0}}^{a} e e^{-y^{2}} d y\right] \\
& =\frac{1}{2} \operatorname{Erfc}\left[\sqrt{\frac{A^{2} T}{W_{0}}}\right] \\
& =\frac{1}{2} \operatorname{\varepsilon rfc}\left(\sqrt{\varepsilon / N_{0}}\right) \\
& \varepsilon_{r} f_{c} \lll 1 \\
& P_{e}=1 / 2 \text { if } \varepsilon r f_{c} \simeq 1
\end{aligned}
$$

* Optimum filtee:- [Transfer function]

$$
\left\{\begin{array}{l}
x_{1}(t) \text { if } x_{2}(t) \\
x_{2}(t) \text { if } x_{1}(t)
\end{array}\right.
$$

data errol

$$
\begin{gathered}
2.3 \Rightarrow \frac{x_{1}(t)+x_{2}(t)}{2}-x_{2}(t)<n(t) \\
\frac{x_{1}(t)-x_{2}(t)}{2}<n(t)
\end{gathered}
$$

3.

$$
\begin{gathered}
2 \Rightarrow \frac{x_{1}(t)+x_{2}(t)}{2}-x_{1}(t)>n(t) \\
\frac{x_{2}(t)-x_{1}(t)}{2}>n(t) \\
P e=\int^{a} s(f) d f \\
\frac{x_{1}(t)-x_{2}(t)}{2}
\end{gathered}
$$

we know

$$
\begin{aligned}
& \text { Know } \\
& \begin{array}{l}
S(t)=f\left(n_{0}(t) \cdot \frac{1}{\sqrt{2 \pi^{2}}} e^{-\left(n_{0}(t)-0\right)^{2} / 2 \sigma^{2}} d\left(n_{0}(t)\right)\right. \\
{\left[x \sigma^{2}=\right.} \\
=\frac{N_{0} T}{2 \tau^{2}} \Rightarrow \sqrt{\frac{N_{0} T}{2 T^{2}}}=\sigma \\
\\
\left.=\frac{1}{\sqrt{2 \pi}} \sqrt{\frac{2 T^{2}}{2 / \sigma_{0}}} e^{-\frac{n_{0}^{2}(t)}{2 N_{0} T}} x\right] \\
\text { www.FirstRanker.com } 2 T^{2}
\end{array}
\end{aligned}
$$

R IrstRanker.com

$$
\begin{aligned}
& P_{e}=\int_{-\alpha}^{\alpha} f\left(n_{0}(t)\right) d n_{0}(t) \\
& P_{e}=\left.\int_{x_{0_{1}}(1)-x_{0_{2}}(t)}^{2} \frac{1}{\sigma \sqrt{2 \pi}} e^{-\left(n_{0}(t)^{2}\right)}\right|_{2 \sigma^{2}} ^{2} d\left(n_{0}(t)\right)
\end{aligned}
$$

Let

$$
\begin{aligned}
& y=\frac{n_{0}(t)}{\sqrt{2} \sigma} \Rightarrow d\left(n_{0}(t)\right)=\sqrt{2} \cdot \sigma d y \\
& n_{0}(t) \rightarrow \alpha \rightarrow y \rightarrow \alpha \\
& n_{0}(t) \rightarrow \alpha \Rightarrow y \rightarrow \alpha \\
& n_{0}(t) \rightarrow \frac{x_{0}(t)-x_{02}(t)}{2} \Rightarrow y \rightarrow \frac{x_{0}(T)-x_{0_{2}}(\tau)}{2 \sqrt{2} \sigma}
\end{aligned}
$$

$$
=\frac{1}{\sqrt{\pi}} \int_{\frac{x_{01}(t)-x_{02}(T)}{2 \sqrt{2} \sigma}}^{0} e^{-y^{2}} d y
$$

$$
\begin{aligned}
& =\frac{1}{2} \frac{2}{\sqrt{\pi}} \int_{x_{01}(T)-x_{02}(T)}^{0} e^{-y^{2}} d y \\
& 2 \sqrt{2} \sigma \\
& =\frac{1}{2} \operatorname{\varepsilon r} f_{c}\left(\frac{x_{01}(T)-x_{02}(T)}{2 \sqrt{2} \sigma}\right)
\end{aligned}
$$

$$
\begin{aligned}
& p=\frac{x_{0}^{2}(T)}{\sigma^{2}}[(S / N) \text { paces }] \\
x_{0}(f) & =H(f) \times(f) \\
* x_{0}(T) & =\int_{-\alpha}^{\infty} H(f) \times(f) e^{j \omega T} \cdot d f
\end{aligned}
$$

*

$$
\begin{aligned}
\sigma^{2} & =\int_{-a}^{a}|H(f)|^{2} S_{n_{i}}(f) d f \\
f & =\frac{\left|x_{0}(T)\right|^{2}}{\left|\sigma^{2}\right|} \\
& =\frac{\left|\int_{-\infty}^{\alpha} H(f) \times(f) e^{j \omega T} d f\right|^{2}}{\mid \int_{-\infty}^{a}\left(\left.H(f)\right|^{2} \operatorname{Sni}(f) \mid\right.}
\end{aligned}
$$

Let

$$
\begin{aligned}
& \theta_{1}=H(f) \sqrt{s_{n} i(f)} \\
& \theta_{2}=\frac{1}{\sqrt{\operatorname{sni}(f)} \times(f) e j \omega T} \\
& \rho=\frac{\left|\theta_{1} \cdot \theta_{2}\right|^{2}}{\left|\theta_{1}\right|^{2}}
\end{aligned}
$$

$$
\therefore \quad J=\frac{\left|\theta_{1} \cdot \theta_{2}\right|^{2}}{\left|\theta_{1}\right|^{2}}
$$

$$
\begin{aligned}
& \int_{-\infty}^{\infty}\left|\theta_{1} \cdot \theta_{2}\right|^{2} d f \leq \int\left|\theta_{1}\right|^{2} d f \int\left|\theta_{2}\right|^{2} d f \\
& \rho \leq \frac{\left|\theta_{1}\right|^{2} d f\left|\theta_{2}\right|^{2} d f}{\left|\theta_{1}\right|^{2} d f} \\
& \rho\left.\leq \mid \theta_{2}(p)\right]^{2} d f \\
& \leq \frac{1}{S_{n i}(f)}\left|x(f) e^{j \omega \tau}\right|^{2} \\
& \leq \frac{\mid x(f)]^{2}}{S_{n}(f)}\left|e^{j \omega T}\right|^{2} \\
& \leq \frac{|x(f)|^{2}}{S_{n}(f)}
\end{aligned} \quad\left|e^{j \omega T}\right|=1
$$

According to sch oui's equation of the equation is to become equality. we should change the assomations of θ_{1} and O_{2} when it should as following

$$
\begin{aligned}
& \theta_{1}(f)=K \theta_{2}^{*}(f) \\
& H(f) \sqrt{S_{n_{i}}}(t)=K \cdot \frac{1}{\sqrt{S_{n_{i}}(t)}} \times *(t) e^{-j \omega T} \\
& H(f)=K \frac{1}{\operatorname{Sn}_{i}^{i}(t)} x^{*}(t) e^{-j \omega t} \\
& \rho=\frac{x_{0}(T)}{\sigma^{2}}=\left[\frac{x_{0_{1}}(T)-x_{0_{2}}(T)}{\sigma}\right]^{2}=\int_{-\infty}^{\infty} \frac{|x(f)|^{2}}{S_{n_{i}}(f)} d t
\end{aligned}
$$

* Matched filter:-
* for this filter we considered generalized gaussian noise.
* when the noise is white gaussian noise, then the optimum

$$
\rho^{2}=\left[\frac{x_{01}(T)-x_{0_{2}}(t)}{t}\right]^{2}=\frac{2}{N_{0}} \int_{-\alpha}^{\alpha}|x(t)|^{2} d F
$$

from parasavals $\int_{-\infty}^{\infty}|x(f)|^{2} d f=\int_{-a}^{a}|x(t)|^{2} d t$

$$
\begin{aligned}
\rho & =2 / N_{0} \int_{-\alpha}^{a}\left(\left.x_{0}(t)\right|^{2} d t\right. \\
& =\frac{2}{N_{0}} \int_{-\alpha}^{\alpha}\left[x_{0_{1}}-x_{0_{2}}\right]^{2} d t \\
\rho & =\frac{2}{N_{0}}\left\{\int_{0}^{T} x_{0_{1}}^{2} d t+\int_{0}^{T} x_{0_{2}}^{2} \cdot d t-2 \int_{0}^{T} 2 x_{0_{1}} x_{0_{2}} d t\right. \\
\rho & =2 / N_{0}\left[\varepsilon_{1}+\varepsilon_{2}-2\left(\varepsilon_{12}\right)\right] \\
u f & \varepsilon_{1}=\varepsilon_{2}=\varepsilon_{12}=\varepsilon \\
\rho & =2 / N_{0} 4 \varepsilon=8 \varepsilon / N_{0} \Rightarrow \sqrt{\rho}=\frac{2 \sqrt{2} \sqrt{\varepsilon}}{\sqrt{N_{0}}} \\
P_{e} & =1 / 2 \varepsilon_{r} f c\left[\frac{x_{01}(T)-x_{02}(T)}{2 \sqrt{2} \sigma}\right] \\
& =\frac{1}{2} \operatorname{Erfc}\left|\frac{1}{2 \sqrt{2}} \sqrt{\varepsilon}\right| \\
& =\frac{1}{2} \operatorname{Erfc}\left[\frac{1}{2 \sqrt{2}} \frac{2 \sqrt{2}}{1} \sqrt{\varepsilon / N_{0}}\right]
\end{aligned}
$$

for matched filter

$$
\begin{aligned}
P e & =1 / 2 \operatorname{Erfc}[\sqrt{\epsilon} / \mathrm{No}] \\
\therefore P_{e} & =1 / 2 \operatorname{Erfc}[\sqrt{\epsilon} / \mathrm{NO}]
\end{aligned}
$$

* for the white gaussian noise the power spectral density is given as.

$$
S_{n i}(t)=\frac{N_{0}}{2}
$$

General gaussian noise filter T.F for matched filter

$$
H(f)=k 2 / N_{0} x^{*}(f) e^{-j \omega r_{1}}
$$

Impulse response of matched filter $h(t)$

$$
\begin{aligned}
h(t) & =\operatorname{IFT}(H(t)] \\
H(t) & =\int_{-\infty}^{a} k \frac{2 k}{N_{0}} \times *(t) e^{-j \omega T} e^{j \omega T} d F \\
& =\operatorname{IFT}\left[2 k / N_{0} x^{*}(t) e^{-j \omega T}\right] \\
& =\operatorname{IFT}\left[2 k / N_{0} \times(t) e^{-j \omega T}\right]
\end{aligned}
$$

we know that

$$
\begin{aligned}
& F T[x(-t)]=x(-f) \\
& \& F T[x(T-t)]=x(-f) e^{-j \omega T} \\
& \text { So }=\operatorname{IFT}\left[2 k / N_{0} F T[x(-f)] e^{-j \omega T}\right] \\
&=\operatorname{IFT}\left[\frac{2 k}{N_{0}} F T x[T-t)\right] \\
& h(t)=\frac{2 k}{N_{0}} x_{0}(T-t) \\
& h(t)=\frac{2 k}{N_{0}}\left[x_{1}(T-t)-x_{2}(T-t)\right]
\end{aligned}
$$

R-FirstRanker.

$$
\text { Consider pe for optimum }=\frac{1}{2} \operatorname{Erfc}\left[\frac{x_{0_{1}}(T)-x_{0_{2}}(T)}{2 \sqrt{2} \sigma}\right]
$$

Oulput function $H(F)$
Let

$$
\begin{aligned}
\rho & =\frac{x_{0}^{2}(T)}{\sigma^{2}}-\left[\frac{\left(x_{0}(T)-x_{0_{2}}(T)\right.}{\sigma}\right]^{2} \\
& =\int_{-\infty}^{\alpha} \frac{|x(F)|^{2}}{S n_{i}(F)} d F \\
P & =2 / N_{0} \int_{-\infty}^{\infty}|x(F)|^{2} d F
\end{aligned}
$$

parsevalis power therem

$$
\begin{aligned}
& \int_{-a}^{a}|x(F)|^{2} d F=\int_{-a}^{a}|x(t)|^{2} d t=\int_{0}^{T}\left(\left.x(t)\right|^{2} d t\right. \\
& P=2 / N_{0} \int_{0}^{T}|x(t)|^{2} d t \\
&=\frac{2}{N_{0}} \int_{0}^{T}\left(x_{O_{1}}(T)-x_{O_{2}}(T)\right]^{2} d t
\end{aligned}
$$

for ASK $x_{01}(T)=A \cos \omega t$

$$
\begin{aligned}
& \rho 0_{2} t()=0 \\
& \rho 2 / N_{0} \int_{0}^{T}(A \cos \omega t)^{2} d t \\
&= \frac{2 A^{2}}{N_{0}} \int_{0}^{T} \cos ^{2} \omega t d t \\
&= \frac{A^{2}}{N_{0}} \int_{0}^{T} 2 \cos ^{2} \omega t d t=\frac{A^{2}}{N_{0}} \int_{0}^{T} 1-\cos 2 \omega t d t
\end{aligned}
$$

R FirstRanker.com
\longrightarrow it must be zero.

$$
\begin{aligned}
& \therefore \rho=\frac{A^{2}}{N_{0}}[T] \\
& \therefore \sqrt{e}=A \sqrt{T / N_{0}} \\
& P_{e}= 1 / 2 \operatorname{Erfc}\left[1 / 2 \sqrt{2} A \sqrt{T / N_{0}}\right] \\
& \therefore A=\sqrt{2 P S} \\
& P_{e}=1 / 2 \operatorname{Erfc}\left[\frac{1}{2 \sqrt{2}} \sqrt{R P s} \sqrt{T / N_{0}}\right] \\
&= 1 / 4 \operatorname{Erfc} \sqrt{\frac{P S T}{N_{0}}} \\
& P_{e}=1 / 2 \operatorname{Erfc} \sqrt{t / 4 N_{0}}
\end{aligned}
$$

*Detection of PSk: - Re of PSK
We know that $x_{0_{1}}(T)=A \cos \omega t$

$$
x_{O_{2}}(t)=-A \cos \omega t
$$

for psk

$$
\begin{aligned}
P & =2 / N_{0} \int_{0}^{T}(2 A \cos \omega T)^{2} d t \\
& =8 / N_{0} \int_{0}^{T}(A \cos \omega T)^{2} d t \\
& =\frac{4 A^{2}}{N_{0}} \int_{0}^{T} 2 \cos ^{2} \omega T d t \\
& =\frac{4 A^{2}}{N_{0}} \int_{0}^{T}[1+\cos 2 \omega t) d t
\end{aligned}
$$

$$
\begin{aligned}
& \rho=\frac{4 A^{2}}{N_{0}}[T] \\
& \sqrt{e}=2 A \sqrt{T / N o} \\
& P_{e}=1 / 2 \quad \operatorname{Erfc}\left[\frac{1}{2 \sqrt{2}} 2 A \sqrt{T / N 0}\right] \\
& =\frac{1}{2} \operatorname{Erfc}\left[\frac{1}{2 \sqrt{2}} 2 \$ / \beta p \phi \sqrt{T / N_{0}}\right] \\
& =\frac{1}{2} \operatorname{Erf}_{c}\left[\frac{\sqrt{P S T}}{N_{0}}\right] \quad[\because \sqrt{P S T}=\sqrt{\epsilon}] \\
& P e=Y_{2} \operatorname{Erfc} \sqrt{\epsilon / \mathrm{NO}}
\end{aligned}
$$

* Detection of fsk: Re of fsk we know that

$$
\begin{gathered}
x_{01}(T)=A \cos (\omega+\phi) t \\
x_{02}(t)=A \cos (\omega-\phi) t \\
\rho=\frac{2}{N_{0}} \int_{0}^{T}[A \cos (\omega+\phi) t-A \cos (\omega-\phi) t]^{2} d t \\
=\frac{2 A^{2}}{N_{0}} \int_{0}^{T}[-2 \sin \omega t \sin \phi t]^{2} d t=2 / N_{0} \int_{0}^{T} 2 \sin ^{2} \omega t 2 \sin ^{2} \theta t d t \\
=\frac{2 A^{2}}{N_{0}}\left[\int_{0}^{T}(1-\cos 2 \omega t)(1-\cos 2 \phi t) d t\right] \\
=\frac{2 A^{2}}{N_{0}}\left[\int_{0}^{T}(1-\cos 2 \phi t-\cos 2 \omega t+\cos 2 \phi t \cos 2 \omega t) d t\right. \\
\left.=\frac{2 A^{2}}{N_{0}} \int_{0}^{T} 1-\cos 2 \phi t-\cos 2 \omega t+y / \cos (\omega+\phi) t+y_{2} \cos (\omega-\phi) t\right] d t \\
\text { www.Firstanker.com }
\end{gathered}
$$

$$
\begin{aligned}
& =\frac{2 A^{2}}{N_{0}}\left[\int_{0}^{T} 1 d t \cdot \int_{0}^{T} \cos 2 \phi t d t \quad \cdot \int_{0}^{T} \cos 2 \omega t d t+1 / 2 \int_{0}^{\text {www.FirstRanker.com }} \cos (\omega+\phi) t d t\right. \\
& \\
& +1 / 2 \int_{0}^{T} \cos (\omega-\phi) d t \\
& \left.=\frac{2 A^{2}}{N_{0}}\left[T-\left[\frac{\sin 2 \phi T}{2 \phi}\right]\right]-0-0-0\right] \\
& \rho=\frac{2 A^{2} T}{N_{0}}\left[1-\frac{\sin 2 \phi T}{2 \phi T}\right]
\end{aligned}
$$

Pmax of $2 \phi T=3 \pi / 2$

$$
\begin{aligned}
P_{\text {max }} & =\frac{2 A^{2} T}{N_{0}}\left[1-\frac{\sin 3 \pi / 2}{3 \pi / 2}\right] \\
& =\frac{2 A^{2} T}{N_{0}}\left[1-\frac{\sin 225^{\circ}}{225}\right] \\
& =\frac{2(\sqrt{2 p})^{2} T}{N_{0}}[1.21]=\frac{4 p T}{N_{0}}(1.21) \\
P_{\text {max }} & =\frac{4.84(E)}{N_{0}} \\
\sqrt{\rho_{\max }} & =\sqrt{\frac{4.84(\epsilon)}{N_{0}}} \\
P_{e} & =1 / 2 \operatorname{Erfc}\left[\frac{1}{2 \sqrt{2}} \sqrt{e}\right] \\
& =1 / 2 \operatorname{Er} f c\left[\frac{1}{2 \sqrt{2}} \sqrt{\frac{4.84 E}{N_{0}}}\right]
\end{aligned}
$$

Analog Communication:-
In this communication, the message signal is continuous in nature ie, the modulating signal is a continuous signal.
Digital signal:
In this communication, the message signal is in the form of binary digits ce, l's and o's.. Classification of Modulation:-

Modulation

 two types:
i) Continuous ware modulation.
ii) Pulse modulation.
i) Continuous Flare Modulation-

If the carrier signal is continuous, then that modulation in called continuous modulation.

Amplitude modulation and Angle modulation are the types of continuous wave modulation.

Phase modulation and frequency modulation comes under angle modielation.
ii) Pulse Modulation-

If the career signal is a pulse signal then that modulation is called pulse madula -Lion. Pulse modulation is again classified . as two types:-
i) Pulse analog modulation.

- is. Pulse digital modulation.
i) Pulse Analog Modulation-

If the message signal is continuous in called pulse analog

FirstRanker.com
 width modulation (PIMIM) and Dulse position modulation (PPM) comes under pulse analog modulation.
ii, Pulse digital modulation
In pulse digital modulation, message signal (os) nodul ating signal is in the form of binary digits. ie, o's and I's.

Pulse code modulation (PCM), Delta modulatron (DM), Adapticre delta modulation (ADM) and Differential Pulse Code modulation (DPCM) comes under Pulse digital modulation
Applications of digital communications,-
i) Cellular communications.
ii) Computer Communications.
iii) RADAR Is

Information Source:- Information source produce information in the form of symbols. The symbols may be either letters or special characters (or) digits.

There are two types of information sources.

If it is analog communication, analog information sauce is used.

Firstantigitaloiccomm uwication digital inform--L ion www.FirstRanker.com do of source is used which generates binary digits like o's and l's.

Important parameters of information source
i)Soure alphabet \therefore The letters, digits special characters generated by information source is called source alphabet.
ii) Symbol rater It is the no.of symbols generated generated by the information source per unit time period Bit med

$$
\text { Symbol rate }=\frac{\text { no.0f symbols generated }}{\text { second. }}
$$

Code
iii) Probabilities of symbols in a pequencer

This represents occurance of symbol code w in a sequence. I. x consider a sequence, the no. of symbols will present number of times in a word sequence with various probabilities. Th is will be Ex one of the important parameter of the information sow es.

Information rate $=$ Symbol $\underset{\text { sate }}{\text { In ce }} \times \begin{gathered}\text { Source } \\ \text { Entrop }\end{gathered}$

$$
=b i t s / s e c \text {. }
$$

Occurrance of souse alphabet in a sequencer This parameter represents chance of occurance of each source alphabet. in a sequence.
Source Encoder-
Source encode converts the symbols generated by the information source into bits. Bit means binary digit ie, binary I's and O 's.
Code words:-
Group of bits is called code word.
Code word Length:
The no.of bits in a code word represents code word length. It may be $2,4,8,16,32$. The no. of symbols represented by the each code word depends upon code word length.

Ex,-1) If code ward length is 4, then no. of symbol represented by that code word is $\cdot 2^{4}=16$.
ii) If code word length is 8 , then no. of symbol. presented by wwifeffstinatied is $28=256$.
i) Block sizes- It is the maximum no. of code words represented by source encoder.
ii) Data rater It will represent the information content from the output of the source encoder.

$$
\begin{aligned}
\text { Date rate } & =\text { symbol rate } \times \text { code word length. } \\
& =\text { symbol } / \mathrm{sec} \times \text { norfbits } / \text { symbol. } \\
& =\text { bits } / \mathrm{sec} .
\end{aligned}
$$

Mi) Efficiency of the encoder it is the rat 80 of output of the encoder to the maximum input of the source encoder.
Source Decoder:-
At the receiver side socuce decodes concerts bits into the symbols.
Channel Encoder
By using source encodes the message signal can be converted into binary digits. If these bits are transmitted through the communication channel, noise gets intufferd with the information and wrong information can be received at theleceiver

To reduce these cerous, ch anne encoder adds some redendent

R. FirstRanker.com

www.FirstRanker.com
i) Type of the coding used.
ii) Coding rate :- It depends upon the various, : Words assigned by the channel encoder
ii) Coding efficiency it is the ratio of input of chanel encode to the output of channelieneodu
Digital modulators and demodulators:-
Since, the message signal is of digital, digile modulators and demodulators are used. In digital modulation carrier signal is a continuous signal. ie; continuous sinusoidal signal. Hence these modulators are called continuous. wave digital modulators.
Amplitude shift keying (ASK).
Phase shift keying (PSt).
Frequency shift keying (FSK)
Differential
Differential phase shift keying (BPSK)
Minimum shift keying (irk).
There are the examples of digital modulators.
The example of digital modulation os,

These will demodulate the received signal at the receiver.
Important parameters
9) Probability of error in the bit or symbol.
ii) Bandwidth needed to transmit the signal.
iii) Synchronous an asynchronous method of detection.

Communication channels.
Various communication channels transmit data through them wire lines, wireless, optical fibers, etc can be considued as communication channels and also magnetic disks, magnetic tapes and optical dishes, can also be considered as communication channel. Because, they can transmit data through then.

FirstRankersometur
Firstranker ste www.FirstRanker.cgm-
This is the noise generated by the solid state component like resistors.
Signal attenuation:-
The amplitude of the signal received at the receiver can be reduced by internal resistance of the communication channel.
iii) Amplitude and phase distortion-

The amplitude and phase of the received signal can be distorted by the non linear characteristics of communication channel.
iv) Multi path distortion-

This distortion obtained in weleles channels. The signals from various transmitters will overlap each other.
(2)

Advantages and Disadvantages of digital communication:-
Advantages.
i) Digital communication systems are simpler and cheaper compared to analog commuinio - cation systems.
3) Since the data is converted into digital form, noise interference can be tolerated.
4) Wide dynamic range is possible since, the data is converted in to digital form.
5) Since, the channel encoding is used, eros can be detected and corrected easily.
6) Digital communications is adapticre to other branches like, digital signal processing and image processing.
Dis advantages

1) Since the data is converted into digitalform datarate becomes high. Hence, transmission band width will be increased.
2) It requires synchronization in case of synchronous modulation.
Elements of Pulse Code Modulations
There are three basic sections in The pulse code modulation and it is a digital pulse modulation technique.
i) transmitting section.
ii) transmitting path

teansmitting pathr

Receining Section

i) PCM Generator (ar) Transmitter-

www.FirstRanker.com

1) Transmitter
2) Low pass filter. Low pass fictur is used to band limit the message signal up to a frequency f_{m}. and all the other frequencies gets eliminated which are greatu than frequency fm.
in) Sample and had circuit it is used to convent continuous time signal into descrete time signal by sampling.
i) q-Levelquantizest Quantizer compares the amplitudes of samples and it will assigns fired digital levels to the amplitudes of in--pulses which are called as quantization Levels and this quantization can be done with minimum cross called quantization error. iv) Encodur It will converts the signal into the form of $60 . t$.
v) Parallel to Serial converters it is difficult to

FirstRanker.com,
www. Firstianker.com it cered wirstranker.com
Converts data into the serial format. Data can be transmitted bit by bit in serial manna
vi) Timer- $D t$ is used to generate series of pulses which act as clock signals for parallel to serial converter and is ample and hold circuit baser on the output of oscillator.
Repeater. Repeaters consists of three basic processes
i) Eqcialsing ii) Timing ion Decision Making

1) Equalized It will reduce phase and ampli--tudendistortion In the pulse code modulated wave?
ii) Dimer- It is cued to generate series of pulses based on the input provided by the equalize Ppi) Decision Making Device It compares the two signals from the equalizes and the timer andilt performs sampling to the signal, where the signal to noise ratio is maximum and giles chan PCM.
iii) PCM Receiuder

The block diagram of PCM receives or vol as follows.

i) Regenerator It is used to reduce the distortion present in the PCM signal and giles clean PCM ii) Serial to parallel conciestor $1 t$ is used to conereet ser oct data In to the parallel format of 4 bits. iii) Digital to analog conviestar and sarge and fold circuit These two circuit combinily conceits digital urignal into the analog signal.
iv) Low pass fictu it It is apo called as recons -ruction filter which is used to reconstruct original signal from et samples. Some tones It would be difficult to keconstinet virginal signal from $Q K$ samples because of quantization error is introduced permanently in the signal at the tearsmittu side. dit the teansmiltu side to reduce this quantization error data rate should

www.FirstRanker.com

Sampling Theorem:-
This theorem is cued to concreet continue. out time signal to discrete time signal.
Statements:- cd band limited signal of fin it energy which has no frequency components greater than fin Hz can be converted to is samples with time inturals lessthan $1 / 2 \mathrm{fm}$ seconds (sampling
Statement is A band limited signal of finite energy which has no frequency components greatu than $f_{m} H z$ can be completely reconstructed from it' samples undue the condition $f_{s} \geqslant 2 f_{m}$ (recomstrurtion) statimen
Combined StatimentrA band limited signal of finite energy which has no frequency components greater than fort can be converted in to pili samples and reconstructed from its samples under the condition $f_{s} \geqslant 2 f_{n}$.

Considu a continuous time signal, $x(t)$ which has band limited to frequency fr. The signal and it" frequency spectrum will be as follows

To perform sampling to $x(t)$, it can be multiplied with ar inputse series of impulses with regularly spaced interuals-represented by $\delta T_{s}(t)$

from nat tiplice, $g(t)=x(t) \cdot \delta T_{s}(t)$.
The trigonometric fourier series of $\delta \Gamma_{s}(t)$ is,

$$
\begin{aligned}
& \delta T_{s}(t)=\frac{1}{T_{s}}\left[1+2 \cos \omega_{s} t+2 \cos 2 \omega_{s} t+2 \cos 3 \omega_{s} t+-\right] \\
& g(t)=x(t) \cdot \frac{1}{T_{s}}\left[1+2 \cos \omega_{s} t+2 \cos 2 \omega_{s} t+2 \cos 3 \omega_{s} t+\cdots\right]
\end{aligned}
$$

Apply foceice transforms 80 th sides,

FirstRanker.com

$$
\begin{aligned}
& \left.+\left[\left(\omega-3 \omega_{s}\right)+x\left(\omega+3 \omega_{s}\right)\right]+x(\omega)\right] \text {. }
\end{aligned}
$$

$[\because$ Since
"Ny:
sumy
con

Nyquist Dater
For the process of sampling the sampling frequency \& should be greater than twice of the maximum frequency of the ness age signal.

If the sampling frequency Is in exactly bc
Ww The FirstRaňkeploitnum siequat frequency -1
 "Nyquist Rate". It is also called as minimum sampling rate.

$$
\text { Nyquist Rate }=f_{s}=2 f_{m}
$$

$\therefore T_{S}=1 / 2 \mathrm{fm} \quad w \theta_{\mathrm{Ch}}$ is called as "nlyquist intural".
The frequency spectrum of sampled signal will consists of frequency bands under the condition Of Nyquist sat will touch each other and will be as follows,

Aliasing Effect
Under the condition $f_{s}<2 f_{m}$, the frequency bands of spectrum of sampling signal will be over--tog with eqach other hecrature of this overlaying orcelapping of frequency bands of spectrum is called as "Aliasing Effect": To reduce aliasing in tu Effect, the signal car be band limited by using a low pass filtu before sampling:

Problem e.
An analog signal is expressed as $x(t)=3 \cos 50 \pi t+10 \sin 300 \pi t-\cos 100 \pi t$. Calculate Nyquist rate for this signal.

Given data $\varphi_{i s,} x([t)=3 \cos 50 \pi t+10 \sin 300 \pi t-\cos 100 \pi t$ compare it with $x(t)=3 \cos \omega_{1} t+10 \sin \omega_{2} t-\cos \omega_{3} t$.

$$
\begin{aligned}
\therefore \omega_{1} & =50 \pi, \omega_{2}=300 \pi, \omega_{3}=100 \pi \\
\therefore 2 \pi f_{1} & =50 \pi, 2 \pi f_{2}=300 \pi, 2 \pi f_{3}=100 \pi \\
\therefore f_{1} & =25 \mathrm{~Hz}, f_{2}=150 \mathrm{~Hz}, f_{3}=50 \mathrm{~Hz} .
\end{aligned}
$$

The maximum frequency is taken as for

$$
\therefore f_{m}=f_{2}=150 \mathrm{~Hz}
$$

Nyquist ratio- $f_{s}=2 f_{n}$.

$$
=2 \times 150
$$

Find the nyquist rate and nyquist
interval for the signal, $x(t)=\frac{1}{2 \pi} \cos (4000 \pi t) \cos (1000 \pi t$
Given $x(x)=\frac{1}{2 \pi} \cos (4000 \pi t) \cdot \cos (1000 \pi t)$.

$$
\begin{aligned}
& =\frac{1}{4 \pi} \cdot 2 \cos (4000 \pi t) \cdot \cos (1000 \pi t) \\
x \cos A \cos B & =\cos (A+B)+\cos (A-B) \\
\therefore x(t) & =\frac{1}{4 \pi}[\cos (5000 \pi t)+\cos (3000 \pi t)]
\end{aligned}
$$

Compare, with $x(t)=\frac{1}{4 \pi}\left[\cos \left(\omega_{1} t\right)+\cos \left(\omega_{2} t\right)\right]$

$$
\begin{array}{ll}
\therefore \omega_{1}=5000 \pi, \quad \omega_{2}=3000 \pi \\
2 \pi_{1}=5000 \pi, & \omega_{2} 2 \pi f_{2}=3000 \pi \\
\therefore f_{1}=2,500 \mathrm{~Hz}, & f_{2}=1500 \mathrm{~Hz} .
\end{array}
$$

Hence, $f_{m}=f_{1}=2,500 \mathrm{~Hz}$

$$
\begin{aligned}
& \therefore \text { Nyquist rater } f_{s}=2 f_{m} \text {. } \\
& \div 2 \times 2500 \text {. } \\
& =5000 \mathrm{~Hz} \\
& =5 k H z \text {. } \\
& \text { nyquist intural } T_{s}=\frac{1}{2 f_{m}} \text {. } \\
& =\frac{1}{5} \\
& =0.2 \mathrm{ktz} \mathrm{msec} \text {. } \\
& =200 \mathrm{Msec} \text {. }
\end{aligned}
$$

Firstranker.com
xeconbtuce Zion filtaw. Firstrananer.com
Ideal low pass filter

practical low pass fiche.

In general to recover the original signal from it samples reconstruction filter is curd, It is an ideal towpass filter. Which allows the frequency unto some cut offfreque--ny.

Ideal LPF cannot be exist but practical LPF having transition bands nearly cutoff frequency will be as shown.

When we pars the sampling signal through the reconstruction filter we will at the original winn.ristranefr.tom
R. FirstRanker.com

- Obfterntejus, ho ice

If sampling frequency $f_{5}=$
ad continuous time signal is,
$x(t)=8 \cos 200 \pi t$ calculate, minimum sampling rate. 2
ii) If the sampling frequency $f_{5}=400 \mathrm{~Hz}$.
what is the discrete fine signal $x(n)$ after striping.
i) Gillen $x(t)=8 \cos 200 \pi t$

Compar with $x(t)=8 \cos \omega_{t} t$

$$
\begin{aligned}
& \therefore \omega_{z}=200 \pi \\
& 2 \pi f_{z}=200 \pi \\
& f=100 \mathrm{~Hz} \quad \therefore f_{m}=f=100 \mathrm{tz}
\end{aligned}
$$

Sampling rate $f_{s}=2 f_{m}$.

$$
=2 \times 100=200 \mathrm{~Hz} .
$$

ii)

$$
\begin{aligned}
F & =\frac{f_{\sin }}{f_{s s}} \text { given } f_{s}=400 \mathrm{~Hz} \\
& =\frac{400}{400}=40.25 \mathrm{~Hz} \\
\therefore x(n) & =8 \cos 2 \pi F n \\
& =8 \cos 2 \pi(0.25) n \\
& =8 \cos (0.5 \pi n) \\
& =8 \cos \frac{\pi n}{2} \\
& \text { www.FirstRakker.com }
\end{aligned}
$$

P. FirstRanker.com

i) Instantaneous
(Ideal sampling).
pulse width is 0 .
ii) Natural Sampling:?
iii) Flat top sampling $\}$ There will be some
(practical sampling).

Quantization-
Quantize assigns some fixed digital Levels to the amplitudes of the sampled signal with minimum distortion and error, which os s called as quantization error.

There ar many types of quantizessit They are:-

i) Uniform Quantizer- In uniform quantizer the step signal size is remains same through out the input range. (This is a symmetrical type of quantized).
ii) Non-uniform Quantizer-In non uniform quantize the step size varies based on the instantaneous values of the input signal.

R.FirstRanker.com

In this quantizer to ansfer charae.

- teeistics origin will passes theough the sising poit of the stais case signal. Working grinciple of quantiver-

To know the warking principle of quantiter we will take mid risse type quantizer.

Quantization Error $E=x_{q}\left(n T_{s}\right)-x\left(n T_{s}\right)$. $-8 / 2-0=1 / 2$.
at $x\left(n i_{s}\right)=0, x_{q}\left(n T_{s}\right)=\Delta I_{2},-A / 2$.

$$
\begin{aligned}
\therefore \epsilon & =\frac{\Delta}{2}-0,-\frac{\Delta}{2}-0 \\
& \epsilon=\Delta / 2 \quad \epsilon=-\Delta / 2 . \therefore \epsilon= \pm \Delta / 2
\end{aligned}
$$

at every point qes $x\left(n T_{5}\right)= \pm \Delta, 2 \Delta A_{3} A_{5} x_{q}\left(n T_{5}\right) \frac{x_{1}}{2}$

$$
E= \pm \frac{3 \Delta}{2}-\Delta=\frac{ \pm \Delta}{2}
$$

$$
f= \pm \Delta / 2
$$

\therefore The max mum limits of cur ane $-1 / 2 \times 4 / 2$
Transmission Sand width or priv
If 'II digits represented by the encoder of the PCM, then the no. of quantization levels segreseated by the quantize of sem is 2^{v}.

Information rate os signaling sate.
$\begin{aligned} r= & n 0.0 \% \text { samples } \\ & \text { per second } x \text { of bits per samples }\end{aligned}$

$$
\begin{aligned}
& r=f_{s}>v \\
& \therefore r=1 \cdot f_{s}
\end{aligned}
$$

Transmission band width should be greater than half of the signalling rate,

$$
\begin{aligned}
& B \cdot W \geqslant \frac{1}{2} \gamma \\
& \therefore B \cdot W \geqslant \frac{1}{2}\left(u f_{s}\right) .
\end{aligned}
$$

nlyquist sate $f_{s}=2 \mathrm{fm}$.

$$
\therefore B \cdot W \geqslant \frac{1}{2}\left(v \cdot 2 f_{m}\right) .
$$

$$
\therefore \quad \text { B. W } \geqslant \text { vf }
$$

R. FirstRanker.com

Firstranker's choice
0 wan to www.FirstRanker.com
www.FirstRanker.com code modulator.
The quantitation error in pulse code mode. -Lation can be expressed as.

$$
E=x_{q}\left(n T_{s}\right)-x\left(n T_{s}\right)
$$

Consider, a symmetrical midrise quantize whose maximum and minimum amplitudes are $A \Delta / 2$ and $-7 \Delta / 2$ at maximum and minimum sampled values ie; $+4 \Delta$ and -4Δ.

Let the amplitudes be xhmaximum and - x maximum and the total amplitude range becomes as $\quad\left(x_{\text {max }}\right)-\left(-x_{\text {max }}\right)=2 x_{\text {max }} \cdot$.

If q-quantization lecrels used to represent the signal, then step size $=\frac{2 x_{\text {max }}}{q}=\frac{\text { Total amplitude level }}{\text { quantization levels. }}$

Let $x_{\text {max }}=1$ and $-x_{\text {max }}=-1$ (Normalized signed). then step size $=\frac{2(\delta)}{q}=\frac{2}{q}$.
The quantization error can be considued as the uniformly distributed random variable.

The uniformly distributed random ceariable

FirstRanker.com
Firstranker's choice © (E) www.FirstRanBer-coquent)zodiofirstianker.com

Signal to Noise Ratio $\frac{s}{N}=\frac{\text { signal power (Norma }}{\text {-lazed) }}$
Quantization Era = Noise power (normalized).

$$
\text { Noise power }=\frac{V^{2} \text { Noise }}{R}
$$

$U_{\text {Noise }}^{2}=$ mean square value of error.

$$
\begin{aligned}
& =E\left(\epsilon^{2}\right) . \\
& {\left[\because\left(\epsilon^{2}\right)=\bar{\epsilon}^{2}=\int_{-\infty}^{\infty} \epsilon^{2} \cdot f_{E}(\epsilon) \cdot d \epsilon .\right.} \\
& \left.\therefore \quad E\left(x^{2}\right)=\bar{x}^{2}=\int_{-\Delta / 2}^{\infty} x^{1} \cdot f_{x}(x) \cdot d x\right] .
\end{aligned}
$$

FirstRanker.coma-
Firstranker $\sqrt{5}\left(\right.$ bets $\left.^{2}\right)=$

$$
\begin{aligned}
& =\frac{1}{\Delta} y / \text { ww.f.FirstRanker.com } \\
& =\frac{1}{\Delta}\left[\frac{\epsilon^{3}}{3}\right]_{-\Delta / 2}^{\Delta / 2}=\frac{1}{\Delta}\left[\frac{\left(t_{2}\right)^{3}}{3}+\frac{\left(\Delta \Delta_{2}\right)}{3}\right] \\
& =\frac{1}{3 \Delta}\left[\frac{\Delta^{3}}{8}+\frac{\Delta^{3}}{8}\right] \\
& =\frac{2 \Delta^{3}}{8} \times \frac{1}{3 \Delta} \\
& =\Delta^{2} / i 2
\end{aligned}
$$

enc
Now, normalized power, $=\frac{U_{\text {Noise }}^{2}}{R}=\frac{\Delta^{2} / 2}{R}$ assume that $R=1$.

$$
\begin{aligned}
& \therefore \text { Noise power }=\frac{\Delta^{2} / 12}{1}=\frac{\Delta^{2}}{12} . \\
& \quad \therefore \text { Quantization error }=\frac{\Delta^{2}}{12} .
\end{aligned}
$$

signal to noise ration

$$
\frac{V}{N}=\frac{\text { signal power (normalized) }}{\text { Noise power (normalized) }}
$$

$$
\text { Noise power (normalised) }=\Delta^{2} / 12 \text {. }
$$

Let signal power $=P$.

$$
\begin{gather*}
\therefore \frac{s}{N}=\frac{P}{\Delta^{2} / 12} \longrightarrow C \tag{1}\\
\Delta=5 \text { dep size }=\frac{2 x_{\text {max }}}{q}
\end{gather*}
$$

-or nowwo.fifitranker.orm ie $x_{\text {max }}=1$.
$\left.\frac{(2)^{3}}{3}+\frac{\left(\frac{\left(x_{2}\right)}{3}\right.}{3}\right]$
By substituting in eque. (1)

$$
\frac{S}{N}=\frac{P}{\left(\frac{2}{q}\right)^{2} \cdot \frac{1}{12}}
$$

But, no. of quantization lecrels $q=2^{v}$.
if v is the no. of bits generated by the encoder.

By substituting the q value,

$$
\frac{\Delta^{2} / 2}{R}
$$

$$
\begin{aligned}
& S / N=\frac{P}{\left(\frac{2}{2^{v}}\right)^{2} \cdot \frac{1}{12}}=\frac{P}{\frac{4}{2^{2 v}} \cdot \frac{1}{12}}=\frac{P \cdot}{\frac{1}{2^{2 v}} \cdot \frac{1}{3}} \\
& \therefore \frac{S}{N}=P \cdot 3 \cdot 2^{2 v} .
\end{aligned}
$$

assume $\rho=1$, then, $\frac{s}{N}=3 \cdot 2^{2 V}$
S / N in decimals is, $(S / N)_{d b}=10 \log _{10}\left(\frac{s}{N}\right)$

$$
\begin{aligned}
\therefore\left(\frac{s}{N}\right)_{d b} & =10 \log _{10}\left(3 \cdot 2^{2 v}\right) \\
& =10\left[\log _{10} 3+\log _{10} 2^{2 v}\right] . \\
& =10\left[\log _{10} 3+2 v \cdot \log _{10} 2\right] . \\
& =10[0.48+2 v(0.3)] \\
\therefore\left(\frac{s}{N}\right)_{d b} & =4 \cdot 8+6 v
\end{aligned}
$$

If the step size is varied, according to the input signal range, then the quantization is called as non-uniform quantization.
Necessity of Non-uniform quantization-
In uniform quantization
quantization error $\epsilon=\Delta / 2$.

$$
\begin{gathered}
\Delta=\frac{2 x_{\text {max }}}{q} . \\
\text { If } x_{\text {max }}=1, \Delta=2 / q . \\
q=2^{v} .
\end{gathered}
$$

If $u=4, q=2^{4}=16$.
Substitute q value in Δ,

$$
\therefore \Delta=\frac{2}{q}=\frac{2}{16}=\frac{1}{8}
$$

wwufFiristitganker.cognv $\frac{1}{2}=\frac{1}{16} \quad: \epsilon=1 / 16$

FirstRanker.com
foivotraker'thboicabove www.ifistranker.com, $1 / 16_{\text {www. Firstiank }}^{\text {th }}$ of the signal consists of quantization errors. ${ }^{\text {www.irstann }}$ the signal having 164 amplitude, 111 will be the quantization error. If the signal have iv, $3 v$ amplitudes, then quantization error is nearly 50% to 30% of the signal. In uniform quantitation, error can be introduced to the signal equally at all amplitudes which gives maximum error. Hence, nonuniform quantization is used which adds errors based on amplitude levels. Hence, non-uniform quantitation is called as "Robust quantization".
Companding,
 contained signal.

Basically, companding consist of two processes,
i) Compressing.
ii) Expanding.
D.FirstRanker.com
 expanding can be done at the receiver side.
i) Compressor-

Compressor can amplify the low ampli tude signals and gilles out put as high
amplitude signals. It will performs attenuation for the high aryplitude signals which can becomes as low amplitude signals. Thess, overall amplitude of all signals becomes equal.

ii) Oniform-Quantization-

The output of the compressor consists of equal amplitudes and for that signal uniform quantization can be performed.
iii) Expander

Expander can paform reverse process of amp the compressor ie; it will attenuates low frequency signals and amplifies the high frequency signals. Thus the original signal can be -fie

www.FirstRanker.com

Companding Characteristics,-
It is the combination of compressor and cation expand characteristics.

The do tied line which is passing though the origin indicates uniform quantization. There are two types of compandinges.-

1) u-Lav compandingi.
u-Lain compander characteristics an Linear and continuous and It will acts as linear amplifier for small signals and logarthemic ampliflier for high amplitude containing signals. In to, it compression. The compressor coharac-- tefintics of $l e$-las compander can be expressed by the formula.

$$
z(x)=(\operatorname{lng})(x) \ln \left(1+l|x| / x_{\text {max }}\right)
$$

FirstRanker.com
 $\operatorname{sign}(x)=$ It will represents the sign of x ie, ± 1.
$\frac{|x|}{x_{\text {max }}}=$ normalized clalue of the ip wort max value The μ-Law compressor characteristics will be as shown.

If $l=0$ then charactuintics parses through origin which represents cuneiform quant tization and the practical value of le that can be cued for speech and video signals and $i t$ is
 The signal to no sher in united states and Japan without comparing are as shown
A-haw Companding- This compounding lues piece wise - Veal segment fox low signals and logan thermic amplifier for high signals. This com -panding is used in PCM telephony in germany The chalceteristics of A law compressor o rs repre--rented by the equation,

$$
Z(x)=\left\{\begin{array}{l}
\frac{A \cdot|x| \mid x_{\text {max }}}{1+\log _{e} A} \text { for } 0 \leqslant|x| / x_{\text {max }} \leqslant A \\
\frac{1+\log _{e} A \cdot|x| / x_{\text {max }}}{1+\log _{e}} \text { for } A \leqslant \frac{|x|-1}{x_{\max }} \leqslant 1 .
\end{array}\right.
$$

If $A=1$ that represents uniform quantization ie, the character,
the ouvics port

FirstBapkerscan甲 in telephony.
Firstran ff's chteic www.FirstRanker.com
wuy.Firstignker.cghere
2) It is used in space communication roghere
the signal power is minimum and huge dis--rance is present.
Advantages of PCML

1) Noise immunity is more.
2) In PCA, between transmitter and receiver regenerative repeater are used. These type of repeater will not be used in analog communica--ton. These repeater are used to reduce the noes:
3) Because of encoding is used only one person can defect the original data.
4) Data can be stored easily because of data is in digital form.
Disadvantages of PCMF
i) Because of the data is in digital, transmission band width will be increased.
5) System becomes complex because of sampling, quantization and encoding.

$$
[P \cdot T: 0]
$$

R. FirstRanker.com

In PCM, Let an analog signal is convated in to discrete signal by flat fop sampling with in
time intervals $T_{s}, 2 T_{5}, 3 T_{5} \ldots .$. After sampling quantization is performed and the amplitudes of samplings au sounded off and then encoding is done. If we observe the above signal, the samplings at T_{5} and $2 T_{s}$ cary same information and those samplings aresaid to be redundantand also the samples at time intervals $4 T_{5}, 5 T_{5}$ and CTs carries the same information 100. These J samples are also said to be redundant. And abs, the samples present at $6 T_{S}$ and $7 T_{s}$ carry information with a difference of one bit only. and the remaining two bits are same and these two bits are said to be redendent. Differential puke code modulationDPCM reduces the redundancy present in the PCM signal. www.Firstiffanker.com acing the is rede

DPCM decresises the motarirstanker.com www.FirstRanker.com the transmission band wickth.
i) DPCM transmitter -

$$
x\left(n T_{5}\right)
$$ signal.

$D P C M$, works on the principle of prediction ie; It DICL works based on the precrious sample colve. From figure,
 $\hat{x}\left(\begin{array}{l}1) \\ \text { predictectsion }\end{array}\right.$

$$
\begin{align*}
\text { from (2), } \quad x_{q}\left(n T_{s}\right) & =e\left(n T_{s}\right)+q\left(n T_{s}\right)+\hat{x}\left(n T_{s}\right) . \tag{3}\\
\text { from (1), } x_{q}\left(n T_{s}\right) & =x\left(n T_{s}\right)-\hat{x}\left(n T_{s}\right)+q\left(n T_{s}\right)+\hat{x}\left(n T_{s}\right) . \\
x_{q}\left(n T_{s}\right) & =x\left(n T_{s}\right)+q\left(n T_{s}\right) .
\end{align*}
$$

ii) DPCM Recciver-

Decoder cymureirst日ankefremary wodneigrsithankeccobm the DPCM signal into the form of quantized signal and this quantized signal is given to the summer and also output of the prediction filter given to the summer. Based on those two valves output wave form can be-generated with permanent quantization error.
\qquad
 Bhtribom ono

Firstranker's choice -
Delta Modulation.
DetaModulation.
In pulse code modulation, number of bits per one sample can be transmitted which increases the transmission bandwidth, hence to decrease the transmission bandwidth in delta modulation only one bit per sample can be transmitted.

In delta modulation, an analog signal can be approximated with a staircase waveform and comparison between these two analog and stair case waveform can be done. The comparison result I can be expressed in form of $\pm \triangle$. Based on this $\pm \Delta$, bit 1 (ox) 0 can be transmitted.

www.FirstRanker.com

Initially, summer compares the present sample value with the precious sample value and prockeces an error signal.

$$
\theta\left(n T_{s}\right)=x\left(n T_{s}\right)-\hat{x}\left(n T_{s}\right)
$$

where $x\left(n T_{s}\right)=$ Present sample value.
$\hat{x}\left(n T_{s}\right)=$ Precious sample value
$C\left(n T_{5}\right)=$ Error signal.
One bit Quantizer-
Ore bit quantizer gives the output based on error gisignal $e\left(n T_{s}\right)$ from the summa and produces output as $b\left(n T_{s}\right)$.

$$
\begin{aligned}
b\left(n T_{s}\right) & =\Delta \text { sign }\left[e\left(n T_{s}\right)\right] \\
& =\left\{\begin{array}{ll}
+\Delta \text { for } x\left(n T_{s}\right) \geqslant \hat{x}\left(n T_{s}\right) . \\
-\Delta \text { for } x\left(n T_{s}\right) \leqslant \hat{x}\left(n T_{s}\right) .
\end{array}\right. \text { www.FirstRanker.com }
\end{aligned}
$$

FirstRangkertgontien bit \because is transmitted If $b\left(n T_{S}\right)=-\Delta$ Www.FirstRagker.ogn
is wulw.EiratBanker.dened
Accumulator: Let us assume that $u\left(n T_{s}\right)$ as the present sample value. ie:
$u\left(n T_{s}\right)=x\left(n T_{s}\right)=$ present sample value
$u\left[(n-I) T_{s}\right]=\hat{x}\left(n T_{s}\right)=$ precious sample value.
The summer in the accumulator adds, output from the quantizer and precious sample value, which gives present sample value.

$$
\begin{aligned}
& \therefore u\left(n T_{s}\right)=u(n-1) T_{s} \pm b\left(n T_{s}\right) . \\
& \therefore u\left(n T_{s}\right)=u(n-1) T_{s} \pm \Delta
\end{aligned}
$$

Receiver Block diagram

At the eeceilree side. the received infor nation is in the form of bit.
Accumulator Accumulator used to convert incoming bits in the form of staid
R. FirstRanker.com
 $u\left(n T_{s}\right)$ which becomes $u(n-1) T_{s}$. Again the summer in the accumulator compares the present sample with the previous sample and based on this comparison step is increased (ow) decreased by the amount of de Δ.
Low parsfilter:- The stair case signal can be smoothened by using Low pass filter to give the original signal.
Advantages of delta modulation-

1) Only one bit for sample is transmitted. Hence transmission band width is reduced.
2) Transmitter and receives, Enplinentation of delta nodulation is easy because there is no sampling, quantization and encoding.
Disadvantages of delta modulation.
3) Slope over load distation.
4) Granular noise.
D. FirstRanker.com

Receiver-

Noise in PCML
The noise in PCM presents at the decoder. While decoding isp peeformed, some errors an introduced in the decoded information which is called as decoding noise.

Let, an information word containing y ${ }^{n} 0$ of bits. Then probability of exerer in word is represented ab,

FirstRanker.com
Fissedikethchoifots Of/ww. FirstRanker.com of the form $b_{U-1}, b_{1-2} \ldots b_{2}, b_{1}, b_{0}$ and Let exes ocrues In the " $m^{t h}$. bit of the word. Then it can be expressed as.

$$
\varepsilon= \pm \Delta \cdot 2^{m} \Rightarrow \pm \frac{2}{q} \cdot 2^{m}\left[\because \Delta=\text { step site } \frac{2 / q]}{}\right.
$$

To calculate decoding noise,

$$
\begin{aligned}
\bar{E}^{2} & =\frac{\left(\sum_{m=0}^{v-1} \frac{2}{q} \cdot 2^{m}\right)^{2}}{V \cdot} \\
\therefore \bar{\varepsilon}^{2} & =\frac{4}{q^{2} \cdot v}\left(\sum_{m=0}^{v-1} 4^{m}\right) . \\
& =\frac{4}{q \cdot \sqrt{n}}
\end{aligned}
$$

In geneal, $\sum_{n=0}^{N} a^{n}=\frac{a^{N+1}-1}{a-1}$.

$$
\begin{aligned}
\therefore \bar{E}^{2} & =\frac{4}{q^{2} v}\left[\frac{4^{v-1+1}-1}{4-1}\right] \\
\bar{E}^{2} & =\frac{4}{3 q^{2} v}\left[\left(2^{2}\right)^{v}-1\right] \\
& =\frac{4}{3 q^{2} v}\left[\left(2^{v}\right)^{2}-1\right]
\end{aligned}
$$

In $P C M, 2^{\prime \prime}=q$ (roof quantization. (evils)

Let $q^{2}>1$.

FirstRanker.com

$$
\begin{aligned}
& =P_{e} U \times \frac{4}{3 V} \\
& =\frac{4 P_{e}}{3}
\end{aligned}
$$

Total noise in PCM $=\underset{\substack{\text { decoding } \\ \text { noise }}}{\substack{\text { quantization } \\ \text { noise }}}$.

$$
=\frac{4 P_{c}}{3}+\frac{\Delta^{2}}{12}
$$

$$
\text { but, } \begin{aligned}
\Delta=\frac{2}{q} & =\text { step size } . \\
& =\frac{4 P_{e}}{3}+\frac{4 / q^{2}}{12} . \\
& =\frac{4 P_{e}}{3}+\frac{1}{3 q^{2}} .
\end{aligned}
$$

$$
\text { Total noise (or) noise pow }=\frac{4 p_{e} q^{2}+1}{3 q^{2}}
$$

Signal to Noise Ratio $s / \omega=\frac{\text { signal power. }}{\text { Noise power. }}$
Let signal power $=S_{x}$.

$$
s / N=\frac{s_{x}}{\frac{4 p_{e} q^{2}+1}{3 q^{2}}}=\frac{S_{*} 3 q^{2}}{1+4 p_{e} q^{2}}
$$

$$
\text { If } \quad \begin{aligned}
4 P_{e} q^{2} \ll 1, s / N & =S_{x} \cdot 3 q^{2} \\
\text { If, } \quad 4 P_{c} q^{2} \gg 1, s / N & =\frac{5 x \cdot 3 q^{2}}{4 P_{e} \cdot q^{2}} \\
& \therefore \quad s / N=\frac{3 \cdot 5 x}{4 P_{e}}
\end{aligned}
$$

Let $x(t)=A_{m} \sin \left(2 \pi f_{m} t\right)$ is a continuous time signal in delta modulation

$$
\begin{aligned}
\text { Slope of delta modulator } & =\frac{\text { step size }}{} \\
& \text { sampling period. } \\
& =\Delta l_{T_{S}} .
\end{aligned}
$$

$=$ Slope of stack case signal.
Slope over load condition occurs when slope of $x(t)>$ slope of stair case.

$$
\begin{aligned}
& =\operatorname{Max}\left|\frac{d}{d t}(x(t))\right|>\frac{\Delta}{T_{s}} \\
& \quad \operatorname{Max}\left|\frac{d}{d t}\left(A_{m} \sin 2 \pi f_{m} t\right)\right|>\Delta / T_{s} \\
& \quad M a x\left|A_{m} \cos 2 \pi f_{m} t \cdot 2 \pi f_{m}\right|>\frac{\Delta}{T_{s}}
\end{aligned}
$$

Since, for maximum value, $\cos 2 \pi f_{m}=1$

$$
\begin{aligned}
\therefore & A_{m} 2 \pi f_{m}>\frac{\Delta}{T_{s}} \\
& A_{m}>\frac{\Delta}{2 \pi f_{m} T_{s}}
\end{aligned}
$$

The slope over load will not ocecu when

$$
\begin{aligned}
& A_{m} \leqslant \frac{\Delta}{2 \pi \mathrm{fm} T_{\mathrm{s}}} \\
& A_{A_{n}}=\frac{\Delta}{\text { ww. Firstrankegron }_{2}}
\end{aligned}
$$

 Noise power (Norma (i nat).
Signal power (Normalized).

$$
\begin{aligned}
\text { signal power } & =\frac{v^{R}}{R} \\
u & =\text { peat voltage of } x(t)=A_{m} . \\
\therefore \text { signal power } & =\frac{A_{m}^{2}}{R} .
\end{aligned}
$$

there we will take RMS value of A_{m}

$$
\begin{aligned}
& A_{m}(R M S) \\
= & \frac{A_{m}}{\sqrt{2}} . \\
\therefore & \text { signal power }=\frac{\left(A_{m} / \sqrt{2}\right)^{2}}{R .}=\frac{A_{m}^{2} .}{2 R .}
\end{aligned}
$$

Normalized signal power $=\frac{A_{m}^{2}}{2} \quad[\because R=1]$
But, $A_{m}=\Delta / 2 \pi f_{m} T_{s}$
\therefore Normalized signal power $=\frac{\Delta^{2}}{8 \pi^{2} f_{m}^{2} T_{s}^{2}}$
Noise power (Normalized)/
The quantization error in delta modulation varies with in the range $\pm \triangle$.

Let the quantization croon is a uniformly distributed random salable and the probability density function of this random variable within. the internal $\pm \Delta$ will be as follows.

$$
\begin{aligned}
f_{\epsilon}(\epsilon) & =\frac{\text { www.FirstRanker.com }}{\Delta-(-\Delta)} \\
& =\frac{1}{2 \Delta}
\end{aligned}
$$

$$
f_{E}(\Sigma)=\left\{\begin{array}{lll}
0 & \text { for } & E<-\Delta \\
1 / 2 \Delta & \text { for } & -\Delta<E<\Delta \\
0 & \text { for } & E Z \Delta
\end{array}\right.
$$

Let quantization error represented by ϵ, then

$$
\begin{aligned}
& \text { Noise power }=\frac{U^{2} \text { Noise }}{R} \\
& U_{\text {Noise }}^{2}=E\left(\Sigma^{2}\right)=E^{2}
\end{aligned}
$$

In general, $\dot{e}\left(x^{2}\right)=\int_{-\infty}^{\infty} x^{2} \cdot f_{x}(x) d x$.

$$
\begin{aligned}
E\left(\varepsilon^{2}\right) & =\int_{-\Delta}^{+\Delta} \varepsilon^{2} \cdot f_{\varepsilon}(\varepsilon) \cdot d \varepsilon \\
& =\int_{-\Delta}^{\Delta^{2}} \frac{1}{2 \Delta} \cdot d \varepsilon \\
& =\varepsilon^{2} \frac{1}{2 \Delta} \int_{-\Delta}^{\Delta} \varepsilon^{2} d \varepsilon \\
& =\frac{1}{2 \Delta}\left[\frac{\varepsilon^{3}}{3}\right]_{-\Delta}^{\Delta} \\
& =\frac{1}{2 \Delta}\left[\frac{\Delta^{3}}{3}+\frac{\Delta^{3}}{3}\right] \\
& =\frac{1}{2 \Delta}\left[\frac{2 \Delta^{3}}{3}\right] \\
\varepsilon^{2} & =\frac{\Delta^{2}}{3}
\end{aligned}
$$

FIrstRanker.com
Firstranker's,choice

www.FirstRanker.com

$$
=\frac{\Delta^{2}}{3 R}
$$

Normalized noise power $=\frac{\Delta^{2}}{3} \quad[\because R=1]$
This is the output noise power. But in delta modulator, at the reccisce side, a low pans filter is used. Let the band width of low pars filter is "WI" and also esscime that noise is a distributed random caiciable with in the intursal of T_{s} and- T_{s} with sampling frequencies as f_{s} and $-f_{s}$.
By the consideration of lonpass filtu,

$$
\begin{aligned}
& \text { Total noise power }=\frac{W}{f_{5}} \times \text { output noise power. } \\
& =\frac{\omega}{f_{s}} \times \frac{\Delta^{2}}{3} \\
& =\frac{0 \cdot \Delta^{2}}{f_{s} \cdot 3} \text {. } \\
& \therefore S / N=\frac{\text { signal power (Normalized) }}{\text { Noise power (Normalized). }} \\
& =\frac{\Delta^{2}}{8 \pi^{2} f_{m}^{2} T_{s}^{2}} \times \frac{3 \cdot f_{s}^{3}}{\omega \cdot \Delta^{2}} . \\
& =\frac{3 f_{s}}{8 \pi^{2} f_{m}^{2} T_{s}^{2} \omega} . \quad\left[\because \frac{1}{f_{s}}=T_{s}\right]
\end{aligned}
$$

R. FirstRanker.com
Y) ${ }^{2}$ stranger's choice
 into two types
P) Base band transmission.

Pi) Pass band transmission.
i) Base band transmissions

In this transmission no carrier presents and the message signal is directly transmitted from source to duritination and this is wed for short distances.
ii) Pass band transmission.

In thin transmission, message signal can be modulated with a carrie signal. This is used for long distances. Types of Pass Band Transmission,i) Amplitude shift Keyingr (ASK) :In this the amplitude of the carrier is
ii) Frequency shift keying (FSK):-

In this the frequency of the carrier is varied according to the instantaneous valuer of the message signal.
viii) Phase shift keying. (PSK):-

Pr this the phase of the carrier is railed according to the instantaneous values of the message signal.
Paper of detection in pass band detection.
i) Coherent detection(synchronous detection)
ii) Non-Coherent detection (Asynchronous Cdeter--lion).

1) Coherent detection r In this detection, synehe--nezation presents between the carries at the receiver and the carrier at the fransmitter ${ }^{\text {ii) }}$ Non-coherent detection - In this no synchroni--ration presents between the carrier at the transmitier and the carrier at the receiver.

Firstranker.com
Tramstrank st choice (BASK) www.FirstRanker.com
www.FirstRanker.com

Receiver (BASK)
 BASk signal with the Locally generated carrier. Then this product is given to the integrator and! integrator performs integration and it also acts as Low pass filter. Output of the integrator is given to the decision making device Decision making device compares output of the integrator to a threshold value e.

$$
\begin{gathered}
\text { If threshold }>\begin{array}{c}
\text { output of } \begin{array}{c}
\text { integrator } \\
\text { value }
\end{array} \rightarrow \text { Binary } \prime \prime \\
\text { If threshold } \\
\text { value }
\end{array}>\begin{array}{c}
\text { output of integrator }
\end{array} \rightarrow \text { Binary } O^{\prime} \text {. }
\end{gathered}
$$

Let modulated signal $s(t)=A \cos 2 \pi f_{c} t \rightarrow 0$
power $P=\frac{U^{2}}{R}$
hems $u=A$ (peak value of signal).

$$
\begin{gathered}
P=A^{2} / R \\
A=A_{\text {rms }}=A^{2} / \sqrt{2} . \\
\therefore P=A^{2} / 2 R \\
P_{\text {Normalized }}=A^{2} / 2 \quad[\because R=1] . \\
P=A^{2} / 2 \Rightarrow A=\sqrt{2 P} .
\end{gathered}
$$

By substituting in equal (1)

$$
\xi(t)=\sqrt{2 p} \cos 2 \pi f_{c} t
$$

$\therefore S(t)=\sqrt{2 P} \cos 2 \pi f_{c} t$ when $b i t y$ is tranimitil

$$
\begin{aligned}
& \sqrt{2 p} \cos \left(2 \pi f_{c} t+\pi\right) \text { when bit or \& } \\
&= \text { teansmitte } \\
&-\sqrt{2 p} \cos \left(2 \pi f_{c} t\right) \text { When bit or is } \\
& \therefore \text { teansmiffe } \\
& s(t)=b(t) \sqrt{2 p} \cos 2 \pi f c t .
\end{aligned}
$$

Where, $b(t)= \pm 1$ when bit ' \prime 's transmitted
$b(t)=-1$ when bit O^{\prime} is transmitted.

Receiver (BPSK).

from the local oscillator has to he watilit ion the modulated signal. In the binary phase shift Keying receiver, this causes signal which Pro in br added is generated from the monlulaled signor At self. For the is the modulating signal tip consilfetyo, is passed through the square law detector. the out put of the square law detector is $\cos ^{2}\left(2 \pi f_{r}+10\right)$ which is the input for the band pass fit tu. This output of the band pass fitch $(\cos 2(2 \pi f c t+\theta))$ is given to a two level frequency dillides whose ill is the required caulis. This carrier produced and the modulated signal an now given to the synchronous demodulator. The output of the synchro--nous demodulator is given to the integrator circuit. Two switches s_{1} and s_{2} are present; out of which s_{2} acts as a decision making de vice. The bit synchronizer anis and off's the switches S_{1} and s_{2} alternately. If the switch two is closed the integrator output appears at the final op Luminal and if s, is closed then the integrator circuit is set to reset state.

$$
S(t)=b(t) \sqrt{2 p} \cos (2 \pi f c t+\theta) \text {. }
$$

Band pass fichu $0 / p=\cos \left(2 \pi f_{c} t+\theta\right)$
frequency divide by to $00 / p=\cos \left(2 \pi f_{c} t+\theta\right)$.
Syrcheonous demodulator $1 / p=s(t) \cdot \cos \left(2 \pi f_{c} t+\theta\right)$.

$$
\begin{aligned}
& =b(t) \sqrt{2 p} \cos ^{2} \cdot(2 \pi f c t+\theta) . \\
& =b(t) \sqrt{2 p}\left[\frac{1+\cos 2(2 \pi f c t+\theta)}{2}\right] \\
& =b(t) \sqrt{\frac{P}{2}}[1+\cos 2(2 \pi f c t+\theta)]
\end{aligned}
$$

To show the output depends upon $v(t)$:-
Let $k e t h$ bit in the information is applied to the integrator.

$$
\begin{aligned}
S_{0}\left(k T_{b}\right) & =b(t) \cdot \sqrt{\frac{P}{2}} \int_{(k-1) T_{b}}^{k T_{b}}\left[1+\cos 2\left(2 \pi_{c} t+\theta\right)\right] d t_{1} \\
& =b(t) \cdot \sqrt{p / 2}\left[\int_{(k-1) T_{b}}^{k T_{b}} 1 \cdot d t+\int_{(k-1) T_{b}}^{k T_{b}} \cos 2\left(2 T_{f} t+\theta\right) d t\right] \\
\therefore S_{0}\left(k T_{b}\right) & =b(t) \cdot \sqrt{\frac{D}{2}}\left[\int_{(k-1) T_{b}}^{k T_{b}} 1 \cdot d t\right] \\
& =b(t) \sqrt{\frac{D}{2}}[t]_{(k-1) T_{b}}^{k T_{b}} \\
& =b(t) \sqrt{\frac{P}{2}}\left[k T_{b}-(k-1) T_{b}\right]
\end{aligned}
$$

www.FirstRanker.com

$$
\begin{array}{cl}
S(t)=\sqrt{2 P_{s}} \cos 2 \pi f_{4} t & \text { If } \% \text { is transmitterl } \\
0 & \text { if } O \text { is transmitted. }
\end{array}
$$

$$
s(t)=\sqrt{2 p_{s}} \cos 2 \pi_{f} f_{c} t
$$

Multeply and divide with $\sqrt{T_{b}}$.

$$
S(t)=\sqrt{P_{s} T_{b}} \sqrt{\frac{2}{T_{b}}} \cos 2 \pi f_{c} t
$$

put $\sqrt{\frac{2}{T_{b}}} \cos 2 \pi f_{c} t=\phi_{1}$

$$
\therefore s(t)=\sqrt{P_{s} T_{b}} \cdot \phi_{1}
$$

Let $P_{s} T_{b}=\epsilon_{b}$.

$$
\therefore s(t)=\sqrt{E_{b}} \cdot \phi_{1}
$$

Geometrical Pepresentation of BPak: for BPSK,

$$
\begin{aligned}
& s(t)=b(t) \cdot \sqrt{2 p} \cos (2 \pi f(t) \\
& b(t)=+1 \text { when }
\end{aligned}
$$

put $\sqrt{\frac{2}{T_{b}}} \cos 2 \pi f c t=\phi_{1}$

$$
\therefore s(t)=' b(t) \cdot \sqrt{P T_{b}} \cdot \phi_{1}
$$

Let $P \cdot T_{b}=E_{b}$.

$$
\begin{gathered}
s(t)=b(t) \sqrt{E_{b}} \cdot \phi_{1} \\
\text { if } b(t)=+1, \quad s(t)=\sqrt{E_{b}} \cdot \phi_{1} \\
\text { if } b(t)=-1, \quad s(t)=-\sqrt{E_{b}} \cdot \phi_{1} \\
\frac{-\sqrt{E_{b}}+\sqrt{E_{b}}}{d} \phi_{,(t)} \\
d=\sqrt{E_{b}-\left(-\sqrt{E_{b}}\right)} \\
d=2 \sqrt{E_{b}}
\end{gathered}
$$

Band width of BASk:
Band width of BASk. $=3 / 2 f_{b}$
Band width of BPSKF
Band width of BOSk $=2 f_{b}$

FirstRanker.com
Lis Canker's choice
(BASK)-

The FSK modulated wave can be written as,

$$
\begin{aligned}
& b(t)=1 \Rightarrow S_{+1}(t)=\sqrt{2 p_{s}} \cos \left(2 \pi f_{c} t+\Omega\right) t . \\
& b(t)=0 \Rightarrow S_{L}(t)-\sqrt{2 P_{s}} \cos \left(2 \pi f_{c} t-\Omega\right) t .
\end{aligned}
$$

By combining the above two equations.

$$
S(t)=\sqrt{2 P_{5}} \cos \left(2 \pi f_{c} t+d(t) \Omega\right) t
$$

$d(t)= \pm M$ based on the message signal $o: l$ In fisk, frequency of the carrier is craved according to the instantaneous coalues of the message signal. Here we will use two ortheop carpers $\phi_{1}(t)$ and $\phi_{2}(t)$.

Message signal is applied to a level shifty and this level shiftu generate unipolar signals based on the input.

FirstRanker.com
 is zero. If the input is 'Y', Level LwhiostRankergemera. -ts $P_{H}(t)$ (or) $P_{L}(t)$
$b(t)=1:-$
If $b(t)=1$, Level shifter generates,
$\sqrt{P_{S} T_{b}} \cdot P_{H}(t)$. beaccuse of the input of the level shift is the message signal on the upper part. In the Lower part, message signal os increited ie, $b(t)=0$, no signal can be generated by the lower Level shifter. The op from the upper level shifter multiplied with carrier $\phi_{1}(t)$ by the product modulator. At the end two outputs from the two product module -tors can be added.

I/P BFSK signal $=\sqrt{P_{S} T_{b}} P_{H}(t) \cdot \sqrt{\frac{2}{T_{b}}} \cos 2 \pi f_{H} t$.
But $P_{H}(t)=1$.
$\therefore O / P$ BFSK signal $=\sqrt{P_{S} T_{b}} \sqrt{\frac{2}{T_{b}}} \cos 2 \pi_{f_{H}} t$.
$b(t)=0$,
If $b(t)=0$, the upper Laurel shiftu can not generate any signal. This $b(t)=0$ is given to the Inicertui in the Lower part and hence if becomes $b(t)=1$. Theerfore this
$\frac{b(y)_{0}}{}$, is given

FirstRanker.com
 www.FirstRanker.com

But puctrol
\therefore op of RaSK rional $=\sqrt{P_{5} \pi b} \cdot \sqrt{\frac{2}{T b}} \cdot \operatorname{cosin}$

Receiver (BFSK).

*eceilred BFSK signal can be multiplied with two caries $\cos 2 \pi f_{c_{1}} t$ and $\cos 2 \pi f_{c_{2}} t$. The two product can be applied to two integrators and by performing integration, the two output from the two Integrators are. P_{1} and $\mathcal{E}_{2} . D_{1}$ and I_{2} are applied to the comparator. Comparator compares the two values of I_{1} and I_{2}

If $I_{1}>I_{2}$ then comparator gives binary as the output.

If $I_{1}<I_{2}$ then comparator O / P becomes

B and width of BFSK $=4 f_{b}$.
Differential phase shift koyingr-(DPSH).
Modulator-

data $b(t)$
Encoded data
 OMsk
shifted encoded data.

Incoming DPSK.

Sand width of DPSK
Band width of DPSK is $=f_{b}$.
$\frac{\text { Adrantages of DPSKL }}{\text { A }}$

1) Dand witth is seduced compared to PSk
2) There is no carrier at the receiver. Hena circuit complexity decrases.
Disadvantages of DPSKR
Indemodulation present bit can be compared with the previous bit walue. thend error propagation is maximum in OPSK.
Quadeature phase sihift Keging (apsi) In transmisesion of ang signab two parameters have to be considered basicall
i) Signal Power.
ii) Tramwwr.Efistrianker.com
 www.FirstRanker.com two bits are combined in the message signal and will be transmitted. These two bits forms Four combinations which will give four - symbols and phase shift in apsk is $\pi / 4$.

Input bits	symbols.	phaseshift
$O(-1)$	$O(-1)$	S_{1}
$O(-1)$	$1(+1)$	S_{2}

$$
\begin{aligned}
S_{e}(t) & =b_{e}(t) \cdot \sqrt{P_{s}} \sin 2 \pi f_{c} t \\
S_{0}(t) & =b_{0}(t) \cdot \sqrt{P_{s}} \cos 2 \pi f_{c} t \\
S(t) & =S_{e}(t)+S_{0}(-1) \\
& =b_{e}(t) \cdot \sqrt{P_{s}} \sin 2 \pi f_{c} t+b_{0}(t) \cdot \sqrt{P_{s}} \cos 2 \pi f_{e}-t .
\end{aligned}
$$

$$
\begin{aligned}
& S(t)=-\sqrt{p_{s}} \cos \cap 2 \pi / f_{c} t \\
& -\sqrt{r_{s} \cos 2 \pi / c t} b_{b e}(t)=-1 \\
& b_{0}(t) R=1
\end{aligned}
$$

Demodulation

FivstRankst $c^{\circ} \mathrm{Cm}$
Hinaxythiek moculation and demordulat: www.FirstRanker.com www.FirstRanker.com
Morlulatori.

Demodulator:-

\qquad
\qquad

UNIT - IV

Information Theory

Information theory deals with representation and the transfer of information.
There are two fundamentally different ways to transmit messages: via discrete signals and via continuous signals. ... For example, the letters of the English alphabet are commonly thought of as discrete signals.

Information sources

Definition:

The set of source symbols is called the source alphabet, and the elements of the set are called the symbols or letters.

The number of possible answers ' r ' should be linked to "information." "Information" should be additive in some sense. We define the following measure of information:

$$
\widetilde{I}(U) \triangleq \log _{5} x,
$$

Where ' r ' is the number of all possible outcome so far an do m message U.
Using this definition we can confirm that it has the wanted property of additivity:

The basis ' b ' of the logarithm b is only a change of units without actually changing the amount of information it describes.

Classification of information sources

1. Discrete memory less.
2. Memory.

Discrete memory less source (DMS) can be characterized by "the list of the symbols, the probability assignment to these symbols, and the specification of the rate of generating these symbols by the source".

1. Information should be proportion to the uncertainty of an outcome.
2. Information contained in independent outcome should add.

Scope of Information Theory

1. Determine the irreducible limit below which a signal cannot be compressed.
2. Deduce the ultimate transmission rate for reliable communication over a noisy channel.
3. Define Channel Capacity - the intrinsic ability of a channel to convey information.

The basic setup in Information Theory has:

- a source,
- a channel and
- destination.

The output from source is conveyed through the channel and received at the destination. The source is a random variable S which takes symbols from a finite alphabet i.e.,

$$
\mathrm{S}=\{\mathrm{s} 0, \mathrm{~s} 1, \mathrm{~s} 2, \cdots, \mathrm{sk}-1\}
$$

With probabilities
$\mathrm{P}(\mathrm{S}=\mathrm{sk})=\mathrm{pk}$ where $\mathrm{k}=0,1,2, \cdots, \mathrm{k}-1$
and
$\mathrm{k}-1, \mathrm{Xk}=0, \mathrm{pk}=1$

The following assumptions are made about the source

1. Source generates symbols that are statistically independent.
2. Source is memory less i.e., the choice of present symbol does not depend on the previous choices.

Properties of Information

1. Information conveyed by a deterministic event is nothing
2. Information is always positive.
3. Information is never lost.
4. More information is conveyed by a less probable event than a more probable event

Entropy:

The Entropy (H(s)) of a source is defined as the average information generated by a discrete memory less source.

Information content of a symbol:

Let us consider a discrete memory less source (DMS) denoted by X and having the alphabet $\left\{\mathrm{U}_{1}, \mathrm{U}_{2}, \mathrm{U}_{3}, \ldots \ldots \mathrm{U}_{\mathrm{m}}\right\}$. The information content of the symbol xi, denoted by $\mathrm{I}\left(\mathrm{x}_{\mathrm{i}}\right)$ is defined as
$\mathrm{I}(\mathrm{U})=\log _{\mathrm{b}} \frac{1}{P(u)}=-\log _{\mathrm{b}} \mathrm{P}(\mathrm{U})$
Where $P(U)$ is the probability of occurrence of symbol U
Units of $\mathrm{I}(\mathrm{xi})$:
For two important and one unimportant special cases of b it has been agreed to use the following names for these units:
$b=2(\log 2): ~ b i t$,

$$
\mathrm{b}=\mathrm{e} \text { (ln): nat (natural logarithm), }
$$

$b=10(\log 10)$: Hartley.
The conversation of these units to other units is given as
$\log _{2} \mathrm{a}=\frac{\ln a}{\ln 2}=\frac{\log a}{\log 2}$

Uncertainty or Entropy (i.e Average information)

Definition:

In order to get the information content of the symbol, the flow information on the symbol can fluctuate widely because of randomness involved into the section of symbols.

The uncertainty or entropy of a discrete random variable (RV) ' U ' is defined as

$$
\begin{gathered}
\mathrm{H}(\mathrm{U})=\mathrm{E}[\mathrm{I}(\mathrm{u})]=\sum_{i=1}^{m} P(u) I(u) \\
H(u)=-\sum_{u \in \operatorname{supp}(u)} P(u) \log p(P u(u)
\end{gathered}
$$

Where PU (•) denotes the probability mass function (PMF) 2 of the RV U, and where the support of P U is defined as

$$
\mathrm{sipp}\left(P_{u}\right) \triangleq\{u \in U \cdot P(v)=0
$$

We will usually neglect to mention "support" when we sum over PU (u) • $\log \mathrm{PU}(\mathrm{u})$, i.e., we implicitly assume that we exclude all u

With zero probability $\mathrm{PU}(\mathrm{u})=0$.

Entropy for binary source

It may be noted that for a binary source U which genets independent symbols 0 and 1 with equal probability, the source entropy $H(u)$ is

$$
\mathrm{H}(\mathrm{u})=-\quad \frac{1}{2} \log _{2} \frac{1}{2} \frac{1}{2} \quad \frac{1}{1_{2}} \mathrm{~g}_{2}=1 \mathrm{~b} / \text { symbol }
$$

Bounds on H (U)

If U has r possible values, then $0 \leq H(U) \leq \log r$, Where

Hence, $\mathrm{H}(\mathrm{U}) \geq 0$. Equalitycanonlybeachievedif $-\mathrm{PU}(\mathrm{u}) \log 2 \mathrm{PU}(\mathrm{u})=0$

Proof. Since $0 \leq P d(a) \leq 1$, we liave

 To derive the upper bound we use at rick that is quite common in. $0<P_{0}(u) \leqslant \mathbb{L}$ Formation theory: We take the deference and try to show that it must be non positive.

$$
\begin{aligned}
& =\left(\frac{1}{=}\right. \\
& =A-H 10 \mathrm{HE}=\mathrm{m}
\end{aligned}
$$

Equality can only be achieved if
2. $|\operatorname{supp}(\mathrm{PU})|=\mathrm{r}$.

Note that if Condition 1 is satisfied, Condition 2 is also satisfied.

Conditional Entropy

Similar to probability of random vectors, there is nothing really new about conditional probabilities given that a particular event $\mathrm{Y}=\mathrm{y}$ has occurred.

The conditional entropy or conditional uncertainty of the $R V \mathrm{X}$ given the event $\mathrm{Y}=\mathrm{y}$ is defined as

$$
\begin{aligned}
H(X \mid Y=y) & \triangleq-\sum_{x \in \operatorname{supp}\left(P_{X Y Y}(\mid y)\right.} P_{X \mid Y}(x \mid y) \log P_{X \mid Y}(x \mid y) \\
& =\mathrm{E}\left[-\log P_{X Y}(X \mid Y) \mid Y=y\right] .
\end{aligned}
$$

Note that the definition is identical to before apart from that everything is conditioned on the event $\mathrm{Y}=\mathrm{y}$

$$
\begin{aligned}
& 0 \leq H(X Y Y=y) \leq \log r_{3} .
\end{aligned}
$$

$$
\begin{aligned}
& H(X \mid Y=y)=\log r \quad \text { if and only } y \quad P(x \mid y)=\frac{1}{2} \quad \forall x:
\end{aligned}
$$

Note that the conditional entropy given the event $\mathrm{Y}=\mathrm{y}$ is a function of y . Since Y is also a RV, we can now average over all possible events $\mathrm{Y}=\mathrm{y}$ according to the probabilities of each event. This will lead to the averaged.

Mutual Information

Although conditional entropy can tell us when two variables are completely independent, it is not an adequate measure of dependence. A small value for $\mathbf{H}(\mathbf{Y} \mid \mathbf{X})$ may implies that \mathbf{X} tells us a great deal about \mathbf{Y} or that $\mathbf{H}(\mathbf{Y})$ is small to begin with. Thus, we measure dependence using mutual information:
$\mathbf{I}(\mathbf{X}, \mathbf{Y})=\mathbf{H}(\mathbf{Y})-\mathbf{H}(\mathbf{Y} \mid \mathbf{X})$
Mutual information is a measure of the reduction of randomness of a variable given knowledge of another variable. Using properties of logarithms, we can derive several equivalent definitions

$$
\begin{gathered}
\mathbf{I}(\mathbf{X}, \mathbf{Y})=\mathbf{H}(\mathbf{X})-\mathbf{H}(\mathbf{X} \mid \mathbf{Y}) \\
\mathbf{I}(\mathbf{X}, \mathbf{Y})=\mathbf{H}(\mathbf{X})+\mathbf{H}(\mathbf{Y})-\mathbf{H}(\mathbf{X}, \mathbf{Y})=\mathbf{I}(\mathbf{Y}, \mathbf{X})
\end{gathered}
$$

In addition to the definitions above, it is useful to realize that mutual information is a particular case of the Kullback-Leibler divergence. The KL divergence is defined as:

$$
\mathrm{D}\left(\mathrm{p}|\mid \mathrm{q})=\int \mathrm{p}(\mathrm{x}) \log \frac{\mathrm{p}(\mathbf{x})}{\mathrm{q}(\mathrm{x})}\right.
$$

KL divergence measures the difference between two distributions. It is sometimes called the relative entropy. It is always non-negative and zero only when $\mathbf{p}=\mathbf{q}$; however, it is not a distance because it is not symmetric.

In terms of KL divergence, mutual information is:

$$
\mathbf{D}(\mathbf{P}(\mathbf{X}, \mathbf{Y}) \| \mathbf{P}(\mathbf{X}) \mathbf{P}(\mathbf{Y})))=\int \mathbf{P}(\mathbf{X}, \mathbf{Y}) \log \frac{\mathbf{P}(\mathbf{X}, \mathbf{Y})}{\mathbf{P}(\mathbf{X}) \mathbf{P}(\mathbf{Y})}
$$

In other words, mutual information is a measure of the difference between the joint probability and product of the individual probabilities. These two distributions are equivalent only when \mathbf{X} and \mathbf{Y} are independent, and diverge as \mathbf{X} and \mathbf{Y} become more dependent.

UNIT - V

Source coding

Coding theory is the study of the properties of codes and their respective fitness for specific applications. Codes are used for data compression, cryptography, errorcorrection, and networking. Codes are studied by various scientific disciplines-such as information theory, electrical engineering, mathematics, linguistics, and computer science-for the purpose of designing efficient and reliable data transmission methods. This typically involves the removal of redundancy and the correction or detection of errors in the transmitted data.

The aim of source coding is to take the source data and make it smaller.

All source models in information theory may be viewed as random process or random sequence models. Let us consider the example of a discrete memory less source (DMS), which is a simple random sequence model.

A DMS is a source whose output is a sequence of letters such that each letter is independently selected from a fixed alphabet consisting of letters; say a1, a2 ,
..........ak. The letters in the source output sequence are assumed to be random and statistically

Independent of each other. A fixed probability assignment for the occurrence of each letter is also assumed. Let us, consider a small example to appreciate the importance of probability assignment of the source letters.

Let us consider a source with four letters a1, a2, a3 and a4 with $\mathrm{P}(\mathrm{a} 1)=0.5$, $\mathrm{P}(\mathrm{a} 2)=0.25, \mathrm{P}(\mathrm{a} 3)=0.13, \mathrm{P}(\mathrm{a} 4)=0.12$. Let us decide to go for binary coding of these four

Source letters While this can be done in multiple ways, two encoded representations are shown below:

Code Representation\#1:

a1: 00, a2:01, a3:10, a4:11

Code Representation\#2:
a1: 0, a2:10, a3:001, a4:110
It is easy to see that in method \#1 the probability assignment of a source letter has not been considered and all letters have been represented by two bits each. However in

The second method only a1 has been encoded in one bit, a2 in two bits and the remaining two in three bits. It is easy to see that the average number of bits to be used per source letter for the two methods is not the same. (a for method \#1=2 bits per letter and a for method \#2 < 2 bits per letter). So, if we consider the issue of encoding a long sequence of

Letters we have to transmit less number of bits following the second method. This is an important aspect of source coding operation in general. At this point, let us note
a) We observe that assignment of small number of bits to more probable letters and assignment of larger number of bits to less probable letters (or symbols) may lead to efficient source encoding scheme.
b) However, one has to take additional care while transmitting the encoded letters. A careful inspection of the binary representation of the symbols in method \#2 reveals that it may lead to confusion (at the decoder end) in deciding the end of binary representation of a letter and beginning of the subsequent letter.

1) The average number of coded bits (or letters in general) required per source letter is as small as possible and
2) The source letters can be fully retrieved from a received encoded sequence.

Shannon-Fano Code

Shannon-Fano coding, named after Claude Elwood Shannon and Robert Fano, is a technique for constructing a prefix code based on a set of symbols and their probabilities. It is suboptimal in the sense that it does not achieve the lowest possible expected codeword length like Huffman coding; however unlike Huffman coding, it does guarantee that all codeword lengths are within one bit of their theoretical ideal $I(x)=-\log P(x)$.

In Shannon-Fano coding, the symbols are arranged in order from most probable to least probable, and then divided into two sets whose total probabilities are as close as possible to being equal. All symbols then have the first digits of their codes assigned; symbols in the first set receive " 0 " and symbols in the second set receive " 1 ". As long as any sets with more than one member remain, the same process is repeated on those sets, to determine successive digits of their codes. When a set has been reduced to one symbol, of course, this means the symbol's code is complete and will not form the prefix of any other symbol's code.

The algorithm works, and it produces fairly efficient variable-length encodings; when the two smaller sets produced by a partitioning are in fact of equal probability, the one bit of information used to distinguish them is used most efficiently. Unfortunately, Shannon-Fano does not always produce optimal prefix codes.

For this reason, Shannon-Fano is almost never used; Huffman coding is almost as computationally simple and produces prefix codes that always achieve the lowest expected code word length. Shannon-Fano coding is used in the IMPLODE compression method, which is part of the ZIP file format, where it is desired to apply a simple algorithm with high performance and minimum requirements for programming.

Shannon-Fano Algorithm:

A Shannon-Fano tree is built according to a specification designed to define an effective code table. The actual algorithm is simple:

For a given list of symbols, develop a corresponding list of probabilities or frequency counts so that each symbol's relative frequency of occurrence is known.
\square Sort the lists of symbols according to frequency, with the most frequently occurring

Symbols at the left and the least common at the right.
\square Divide the list into two parts, with the total frequency counts of the left part being as

Close to the total of the right as possible.
$\square \quad$ The left part of the list is assigned the binary digit 0 , and the right part is assigned the digit 1 . This means that the codes for the symbols in the first part will all start with 0 , and the codes in the second part will all start with 1 .

Recursively apply the steps 3 and 4 to each of the two halves, subdividing groups and adding bits to the codes until each symbol has become a corresponding code leaf on the tree.

Example:

The source of information A generates the symbols $\{\mathrm{A} 0, \mathrm{~A} 1, \mathrm{~A} 2, \mathrm{~A} 3$ and A 4$\}$ with the corresponding probabilities $\{0.4,0.3,0.15,0.1$ and 0.05$\}$. Encoding the source symbols using binary encoder and Shannon-Fano encoder gives

Source Symbol	$\mathbf{P i}_{i}$	Binary Code	Shannon-Fano
$\mathbf{A 0}$	0.4	000	0
$\mathbf{A 1}$	0.3	001	10
$\mathbf{A 2}$	0.15	010	110
$\mathbf{A 3}$	0.1	011	1110
$\mathbf{A 4}$	0.05	100	1111
Lavg	$\mathbf{H}=\mathbf{2 . 0 0 8 7}$	$\mathbf{3}$	$\mathbf{2 . 0 5}$

The average length of the Shamnon-Fano code is

$$
\text { Lavg }=\sum_{\mathrm{i}=0}^{4} \text { Pili }=0.4 * 1+0.3 * 2+0.15 * 3+0.1 * 4+0.05 * 4=2.05 \text { bit } / \text { symbol }
$$

Thus the efficiency of the Shamon-Fano code is

$$
\eta=\frac{\mathrm{H}}{\text { Lavg }}=\frac{2.0087}{2.05}=98 \%
$$

This example demonstrates that the efficiency of the Shannon-Fano encoder is much higher than that of the binary encoder.

Shanon-Fano code is a top-down approach. Constructing the code tree, we get

The Entropy of the source is

$$
\mathrm{H}=-\sum_{\mathrm{i}=0}^{4} \mathrm{Pi} \log _{2} \mathrm{Pi}=2.0087 \mathrm{bit} / \text { symbol }
$$

Since we have 5 symbols $\left(5<8=2^{3}\right)$, we need 3 bits at least to represent each symbol in binary (fixed-length code). Hence the average length of the binary code is

$$
\text { Lavg }=\sum_{i=0}^{4} \text { Pili }=3(0.4+0.3+0.15+0.1+0.05)=3 \mathrm{bit} / \mathrm{symbol}
$$

Thus the efficiency of the binary code is

$$
\eta=\frac{\mathrm{H}}{\text { Lavg }}=\frac{2.0087}{1-4}=67 \%
$$

Binary Huffman Coding (an optimum variable-length source coding scheme)
In Binary Huffman Coding each source letter is converted into a binary code word. It is a prefix condition code ensuring minimum average length per source letter in bits.

Let the source letters a1, a 2, \qquad ak have probabilities $\mathrm{P}(\mathrm{a} 1), \mathrm{P}(\mathrm{a} 2)$, \qquad $\mathrm{P}(\mathrm{aK})$ and let us assume that $\mathrm{P}(\mathrm{a} 1) \geq \mathrm{P}(\mathrm{a} 2) \geq \mathrm{P}(\mathrm{a} 3) \geq \ldots \geq \mathrm{P}(\mathrm{aK})$.

We now consider a simple example to illustrate the steps for Huffman coding.

Steps to calculate Huffman Coding

Example Let us consider a discrete memory less source with six letters having
$\mathrm{P}(\mathrm{a} 1)=0.3, \mathrm{P}(\mathrm{a} 2)=0.2, \mathrm{P}(\mathrm{a} 3)=0.15, \mathrm{P}(\mathrm{a} 4)=0.15, \mathrm{P}(\mathrm{a} 5)=0.12$ and $\mathrm{P}(\mathrm{a} 6)=0.08$.

Arrange the letters in descending order of their probability (here they are arranged).

Consider the last two probabilities. Tie up the last two probabilities. Assign, say, 0 to the last digit of representation for the least probable letter (a6) and 1 to the last digit of representation for the second least probable letter (a5). That is, assign ' 1 ' to the upper arm of the tree and ' 0 ' to the lower arm.

(3) Now, add the two probabilities and imagine a new letter, say b1, substituting for a6 and a5. So $\mathrm{P}(\mathrm{b} 1)=0.2$. Check whether a 4 and b1are the least likely letters. If not, reorder the letters as per Step\#1 and add the probabilities of two least likely letters. For our example, it leads to:

$$
\mathrm{P}(\mathrm{a} 1)=0.3, \mathrm{P}(\mathrm{a} 2)=0.2, \mathrm{P}(\mathrm{~b} 1)=0.2, \mathrm{P}(\mathrm{a} 3)=0.15 \text { and } \mathrm{P}(\mathrm{a} 4)=0.15
$$

(4) Now go to Step\#2 and start with the reduced ensemble consisting of a1 a a , a3,

a4 and b1. Our example results in:
Here we imagine another letter b1, with $\mathrm{P}(\mathrm{b} 2)=0.3$.

Continue till the first digits of the most reduced ensemble of two letters are assigned a ' 1 ' and a ' 0 '.

Again go back to the step (2): $\mathrm{P}(\mathrm{a} 1)=0.3, \mathrm{P}(\mathrm{b} 2)=0.3, \mathrm{P}(\mathrm{a} 2)=0.2$ and $\mathrm{P}(\mathrm{b} 1)=0.2$. Now we consider the last two probabilities:

So, $\mathrm{P}(\mathrm{b} 3)=0.4$. Following Step\#2 again, we get, $\mathrm{P}(\mathrm{b} 3)=0.4, \mathrm{P}(\mathrm{a} 1)=0.3$ and $\mathrm{P}(\mathrm{b} 2)=0.3$.

Next two probabilities lead to:

With $\mathrm{P}(\mathrm{b} 4)=0.6$. Finally we get only two probabilities

6. Now, read the code tree inward, starting from the root, and construct the code words. The first digit of a codeword appears first while reading the code tree inward.

Hence, the final representation is: $\mathrm{a} 1=11, \mathrm{a} 2=01, \mathrm{a} 3=101, \mathrm{a} 4=100, \mathrm{a} 5=001, \mathrm{a} 6=000$.
A few observations on the preceding example

1. The event with maximum probability has least number of bits
2. Prefix condition is satisfied. No representation of one letter is prefix for other. Prefix condition says that representation of any letter should not be a part of any other letter.
3. Average length/letter (in bits) after coding is

$$
=\sum P\left(a_{i}\right) n_{i}=2.5 \text { bits/letter. }
$$

4. Note that the entropy of the source is: $\mathrm{H}(\mathrm{X})=2.465$ bits/symbol. Average length per source letter after Huffman coding is a little bit more but close to the source entropy. In fact, the following celebrated theorem due to C. E. Shannon sets the limiting value of average length of code words from a DMS.

Shannon-Hartley theorem

In information theory, the Shannon-Hartley theorem tells the maximum rate at which information can be transmitted over a communications channel of a specified bandwidth in the presence of noise. It is an application of the noisy-channel coding theorem to the archetypal case of a continuous-time analog communications channel subject to Gaussian noise. The theorem establishes Shannon's channel capacity for such a communication link, a
bound on the maximum amount of error-free information per time unit that can be transmitted with a specified bandwidth in the presence of the noise interference, assuming that the signal power is bounded, and that the Gaussian noise process is characterized by a known power or power spectral density.
The law is named after Claude Shannon and Ralph Hartley.

Hartley Shannon Law

The theory behind designing and analyzing channel codes is called Shannon's noisy channel coding theorem. It puts an upper limit on the amount of information you can send in a noisy channel using a perfect channel code. This is given by the following equation:

$$
C=B \times \log _{2}(1+S N R)
$$

where C is the upper bound on the capacity of the channel (bit/s), B is the bandwidth of the channel (Hz) and SNR is the Signal-to-Noise ratio (unit less).

Bandwidth-S/N Tradeoff

The expression of the channel capacity of the Gaussian channel makes intuitive sense:

1. As the bandwidth of the channel increases, it is possible to make faster changes in the information signal, thereby increasing the information rate.

2 As S / N increases, one can increase the information rate while still preventing errors due to noise.
3. For no noise, S / N tends to infinity and an infinite information rate is possible irrespective of bandwidth.

Thus we may trade off bandwidth for SNR. For example, if $\mathrm{S} / \mathrm{N}=7$ and $\mathrm{B}=4 \mathrm{kHz}$, then the channel capacity is $\mathrm{C}=12 \times 10^{3} \mathrm{bits} / \mathrm{s}$. If the SNR increases to $\mathrm{S} / \mathrm{N}=15$ and B is decreased to 3 kHz , the channel capacity remains the same. However, as B tends to 1 , the channel capacity does not become infinite since, with an increase in bandwidth, the noise power also increases. If the noise power spectral density is $\eta / 2$, then the total noise power is $\mathrm{N}=\mathrm{nB}$, so the Shannon-Hartley law becomes

$$
\begin{aligned}
C & =B \log _{2}\left(1+\frac{S}{\eta B}\right)=\frac{S}{\eta}\left(\frac{\eta B}{S}\right) \log _{2}\left(1+\frac{S}{\eta B}\right) \\
& =\frac{S}{\eta} \log _{2}\left(1+\frac{S}{\eta B}\right)^{\eta B / S}
\end{aligned}
$$

Noting that

$$
\lim _{x \rightarrow 0}(1+x)^{1 / x}=e
$$

and identifying x as $x=S / \eta B$, the channel capacity as B increases without bound becomes

$$
C_{\infty}=\lim _{B \rightarrow \infty} C=\frac{S}{\eta} \log _{2} e=1.44 \frac{S}{\eta}
$$

UNIT - VI
 Forward Error Correction (FEC)

The key idea of FEC is to transmit enough redundant data to allow receiver to recover from errors all by itself. No sender retransmission required.
The major categories of FEC codes are
Block codes, Cyclic codes, Convolutional codes, and Turbo codes.

Linear Block Codes

Information is divided into blocks of length k r parity bits or check bits are added to each block (total length $n=k+r$).
Code rate $R=k / n$
Decoder looks for codeword closest to received vector
(received vector $=$ code vector + error vector)
Tradeoffs between
Efficiency
Reliability
Encoding/Decoding complexity
In Maximum-likelihood decoding, we compare the received vector with all possible transmitted codes and choose that which is closest in Hamming distance (i.e., which is differs in the fewest bits). This results in a minimum probability of a code word error.

Linear Block Codes

The uncoded k data bits be represented by the \mathbf{m} vector:

$$
\mathbf{m}=\left(m_{1}, m_{2}, \ldots, m_{k}\right)
$$

The corresponding codeword be represented by the n -bit \mathbf{c} vector:

$$
\mathbf{c}=\left(c_{1}, c_{2}, \ldots c_{k}, c_{k+1}, \ldots, c_{n-1}, c_{n}\right)
$$

- Each parity bit consists of weighted modulo 2 sum of the data bits represented by \oplus symbol.

$$
\begin{aligned}
& \text { © } c_{1}=m \\
& { }^{\wedge} c_{2}=m_{2} \\
& { }^{a}{ }^{\circ} \\
& \boldsymbol{\alpha}_{c}^{c_{k}=m_{k}} \begin{array}{c}
\\
k
\end{array} \\
& \underset{k+1}{ } m_{11(k+1)}^{p} m_{22(k+1)}^{p} \oplus \ldots \oplus m_{k k(k+1)}^{p}
\end{aligned}
$$

Block Codes: Linear Block Codes

- Linear Block Code

The codeword block \boldsymbol{C} of the Linear Block Code is

$$
\boldsymbol{C}=m \boldsymbol{G}
$$

where m is the information block, \boldsymbol{G} is the generator matrix.

$$
\boldsymbol{G}=\left[\mathbf{I}_{k} \mid \mathbf{P}\right]_{k \times n}
$$

where $p_{i}=$ Remainder of $\left[x^{n-k+i-1} / g(x)\right]$ for $i=1,2, . ., k$, and \mathbf{I} is unit matrix.

- The parity check matrix
$\boldsymbol{H}=\left[\mathbf{P}^{\mathbf{T}} \mid \mathbf{I}_{n-k}\right]$, where $\mathbf{P}^{\mathbf{T}}$ is the transpose of the matrix \mathbf{p}.

Block Codes: Example

Example : Find linear block code encoder \mathbf{G} if code generator polynomial $g(x)=1+x+x^{3}$ for a $(7,4)$ code.

We have $\mathrm{n}=$ Total number of bits $=7, \mathrm{k}=$ Number of information bits $=4$,
$\mathrm{r}=$ Number of parity bits $=\mathrm{n}-\mathrm{k}=3$.
\square

$$
\begin{aligned}
& r 10 \mathrm{~L} 0 p_{\gamma_{\infty}}
\end{aligned}
$$

where

$$
p_{i}=\operatorname{Re} \text { mainder of } \frac{\Upsilon \frac{x^{n-k+i-1} /}{\leq g(x)}}{\leq} \quad i=1,2, \text { L, } k
$$

Block Codes: Example (Continued)

Block Codes: Linear Block Codes

Message
vector
\mathbf{m}

Operations of the generator matrix and the parity check matrix

The parity check matrix H is used to detect errors in the received code by using the fact that $\mathrm{c} * \mathrm{H}^{\mathrm{T}}=\mathbf{0}$ (null vector)

Let $\mathrm{x}=\mathrm{c} \oplus \mathrm{e}$ be the received message where c is the correct code and e is the error Compute $\mathrm{S}=\mathrm{x}^{*} \mathrm{H}^{\mathrm{T}}=(\mathrm{c} \oplus \mathrm{e}) * \mathrm{H}^{\mathrm{T}}=\mathrm{c} \mathrm{H}^{\mathrm{T}} \oplus \mathrm{e} \mathrm{H}^{\mathrm{T}}=\mathrm{e} \mathrm{H}^{\mathrm{T}}$ (s is know as syndrome matrix) If S is 0 then message is correct else there are errors in it, from common known error patterns the correct message can be decoded.

Linear Block Codes

■ Consider a $(7,4)$ linear block code, given by \mathbf{G} as

$$
G=\begin{gathered}
Y_{1}^{\prime} 000111 / \\
, 0100110^{\infty} \\
, 0010101 \infty^{\infty} \\
\vdots \\
\vdots 000101 \infty_{f}^{\infty}
\end{gathered}
$$

Then

$H=\begin{gathered} , 1110100 / \\ 1^{\prime} \leq 10110100_{\infty}^{\infty} \end{gathered}$	

For $\mathbf{m}=\left[\begin{array}{llll}1 & 0 & 1 & 1\end{array}\right]$ and $\mathbf{c}=\mathbf{m} \mathbf{G}=\left[\begin{array}{llllll}1 & 0 & 1 & 1 & 0 & 0\end{array}\right]$.
If there is no error, the received vector $\mathbf{x}=\mathbf{c}$, and $\mathbf{s}=\mathbf{c H}^{\mathbf{T}}=[0,0,0]$

Linear Block Codes

Let c suffer an error such that the received vector $\mathbf{x}=\mathbf{c} \oplus \mathbf{e}$

$$
\begin{aligned}
& =\left[\begin{array}{lllllll}
1 & 0 & 1 & 1 & 0 & 0 & 1
\end{array}\right] \oplus\left[\begin{array}{lllllll}
0 & 0 & 1 & 0 & 0 & 0 & 0
\end{array}\right] \\
& =\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] .
\end{aligned}
$$

Then,

$$
\begin{aligned}
& \mathrm{s}=\mathrm{xH}^{\mathrm{T}}
\end{aligned}
$$

Cyclic Codes

It is a block code which uses a shift register to perform encoding and Decoding (all code words are shifts of each other)
The code word with n bits is expressed as

$$
c(x)=c_{1} x^{n-1}+c_{2} x^{n-2} \ldots \ldots+c_{n}
$$

where each c_{i} is either a 1 or 0 .

$$
\mathrm{c}(\mathrm{x})=\mathrm{m}(\mathrm{x}) \mathrm{x}^{\mathrm{n}-\mathrm{k}}+\mathrm{c}_{\mathrm{p}}(\mathrm{x})
$$

where $c_{p}(x)=$ remainder from dividing $m(x) x^{n-k}$ by generator $g(x)$ if the received signal is $c(x)+e(x)$ where $e(x)$ is the error.

To check if received signal is error free, the remainder from dividing $c(x)+e(x)$ by $g(x)$ is obtained(syndrome). If this is 0 then the received signal is considered error free else error pattern is detected from known error syndromes.

Cyclic Code: Example

Example : Find the codewords $c(x)$ if $m(x)=1+x+x^{2}$ and $g(x)=1+x+x^{3}$ for $(7,4)$ cyclic code.

We have $\mathrm{n}=$ Total number of bits $=7, \mathrm{k}=$ Number of information bits $=4$,
$\mathrm{r}=$ Number of parity bits $=\mathrm{n}-\mathrm{k}=3$.

$$
\Upsilon m(x) x^{n-k} /
$$

\square

$$
\begin{aligned}
& \begin{aligned}
& c_{p}(x)=r e m \\
& \leq g(x) \\
& f^{5}+x^{4}+x^{3}
\end{aligned} \\
& =\operatorname{rem}_{\leq} x^{3}+x+1 \infty_{f}=x
\end{aligned}
$$

Then,

$$
c(x)=m(x) x^{n-k}+c_{p}(x)=x+x^{3}+x^{4}+x^{5}
$$

Cyclic Redundancy Check (CRC)

Cyclic redundancy Code (CRC) is an error-checking code.

The transmitter appends an extra n-bit sequence to every frame called Frame Check Sequence (FCS). The FCS holds redundant information about the frame that helps the receivers detect errors in the frame.

CRC is based on polynomial manipulation using modulo arithmetic. Blocks of input bit as coefficient-sets for polynomials is called message polynomial. Polynomial with constant coefficients is called the generator polynomial.

Cyclic Redundancy Check (CRC)

- Generator polynomial is divided into the message polynomial, giving quotient and remainder, the coefficients of the remainder form the bits of final CRC.
- Define:

M - The original frame (k bits) to be transmitted before adding the Frame Check Sequence (FCS).
F - The resulting FCS of n bits to be added to M (usually $\mathrm{n}=8,16,32$).
T - The cascading of M and F .
P - The predefined CRC generating polynomial with pattern of $\mathrm{n}+1$ bits.
The main idea in CRC algorithm is that the FCS is generated so that the remainder of T/P is zero.

Cyclic Redundancy Check (CRC)

- The CRC creation process is defined as follows:
\square Get the block of raw messageLeft shift the raw message by n bits and then divide it by p
\square Get the remainder R as FCSAppend the R to the raw message. The result is the frame to be transmitted.
- CRC is checked using the following process:Receive the frameDivide it by PCheck the remainder. If the remainder is not zero, then there is an error in the frame.

Common CRC Codes

Code	Generator polynomial $g(x)$	Parity check bits
CRC-12	$1+x+x^{2}+x^{3}+x^{11}+x^{12}$	12
CRC-16	$1+x^{2}+x^{15}+x^{16}$	16
CRC-CCITT	$1+x^{5}+x^{15}+x^{16}$	16

Convolutional Codes

- Encoding of information stream rather than information blocks
- Value of certain information symbol also affects the encoding of next M information symbols, i.e., memory M
- Easy implementation using shift register © Assuming k inputs and n outputs
- Decoding is mostly performed by the Viterbi Algorithm (not covered here)

Convolutional Codes: ($\mathrm{n}=\mathbf{2}, \mathrm{k}=1, \mathrm{M}=\mathbf{2}$) Encoder

Input:	1	1	1	0	0	0	\ldots
Output:	11	01	10	01	11	00	\ldots
Input:	1	0	1	0	0	0	\ldots
Output:	11	10	00	10	11	00	\ldots

State Diagram

Tree Diagram

Trellis

Interleaving

De-Interleaving

$=$$a 1$, $a 2$, $a 3$, $a 4$ $a 5$, $a 6$, $a 7$, $a 8$ $a 9$, $a 10$, $a 11$, $a 12$ $a 13$, $a 14$, $a 15$, $a 16$

Interleaving (Example)

Information Capacity Theorem (Shannon Limit)

■ The information capacity (or channel capacity) C of a continuous channel with bandwidth B Hertz satisfies

$$
C=B \log _{2}\left(1+\frac{S}{N}\right) \quad \text { bits } / \sec \text { ond }
$$

Shannon Limit

Data Rate per Hertz

Turbo Codes

A brief historic of turbo codes:
The turbo code concept was first introduced by C. Berrou in 1993. Today, Turbo Codes are considered as the most efficient coding schemes for FEC.
Scheme with known components (simple convolutional or block codes, interleaver, and soft-decision decoder)
Performance close to the Shannon Limit at modest complexity!
Turbo codes have been proposed for low-power applications such as deep-space and satellite communications, as well as for interference limited applications such as third generation cellular, personal communication services, ad hoc and sensor networks.

Turbo Codes: Encoder

X: Information
Y_{i} : Redundancy Information

Turbo Codes: Decoder

X': Decoded Information

Automatic Repeat Request (ARQ)

Stop-And-Wait ARQ (SAW ARQ)

Stop-And-Wait ARQ (SAW ARQ)

Throughput:

$$
\mathrm{S}=(1 / \mathrm{T}) *(\mathrm{k} / \mathrm{n})=\left[\left(1-\mathrm{P}_{\mathrm{b}}\right)^{\mathrm{n}} /\left(1+\mathrm{D} * \mathrm{R}_{\mathrm{b}} / \mathrm{n}\right)\right] *(\mathrm{k} / \mathrm{n})
$$

where T is the average transmission time in terms of a block duration

$$
\begin{aligned}
\mathrm{T}= & \left(1+\mathrm{D} * \mathrm{R}_{\mathrm{b}} / \mathrm{n}\right) * \mathrm{P}_{\mathrm{ACK}}+2 *\left(1+\mathrm{D} * \mathrm{R}_{\mathrm{b}} / \mathrm{n}\right) * \mathrm{P}_{\mathrm{ACK}} *\left(1-\mathrm{P}_{\mathrm{ACK}}\right) \\
& +3 *\left(1+\mathrm{D} * \mathrm{R}_{\mathrm{b}} / \mathrm{n}\right) * \mathrm{P}_{\mathrm{ACK}} *\left(1-\mathrm{P}_{\mathrm{ACK}}\right)^{2}+\ldots . \\
= & \left(1+\mathrm{D} * \mathrm{R}_{\mathrm{b}} / \mathrm{n}\right) * \mathrm{P}_{\mathrm{ACK}} \sum_{i=1}^{\infty} \mathrm{i} *\left(1-\mathrm{P}_{\mathrm{ACK}}\right)^{\mathrm{i}-1} \\
= & (1+\mathrm{D} * \mathrm{Rb} / \mathrm{n}) * \mathrm{P}_{\mathrm{ACK}} /\left[1-\left(1-\mathrm{P}_{\mathrm{ACK}}\right)\right]^{2} \\
= & \left(1+\mathrm{D} * \mathrm{R}_{\mathrm{b}} / \mathrm{n}\right) / \mathrm{P}_{\mathrm{ACK}}
\end{aligned}
$$

where $\mathrm{n}=$ number of bits in a block, $\mathrm{k}=$ number of information bits in a block, $\mathrm{D}=$ round trip delay, $\mathrm{R}_{\mathrm{b}}=$ bit rate, $\mathrm{P}_{\mathrm{b}}=\mathrm{BER}$ of the channel, and $\mathrm{P}_{\mathrm{ACK}}=\left(1-\mathrm{P}_{\mathrm{b}}\right)^{\mathrm{n}}$

Go-Back-NARQ (GBN ARQ)

Go-Back-N ARQ (GBN ARQ)

Throughput

$$
\begin{aligned}
\mathrm{S} & =(1 / \mathrm{T}) *(\mathrm{k} / \mathrm{n}) \\
& =\left[\left(1-\mathrm{P}_{\mathbf{b}}\right)^{\mathrm{n}} /\left(\left(1-\mathrm{P}_{\mathbf{b}}\right)^{\mathrm{n}}+\mathrm{N} *\left(1-\left(1-\mathrm{P}_{\mathbf{b}}\right)^{\mathrm{n}}\right)\right)\right]^{*}(\mathrm{k} / \mathrm{n})
\end{aligned}
$$

where

$$
\begin{aligned}
\mathrm{T}= & 1 * \mathrm{P}_{\mathrm{ACK}}+(\mathrm{N}+1) * \mathrm{P}_{\mathrm{ACK}} *\left(1-\mathrm{P}_{\mathrm{ACK}}\right)+2 *(\mathrm{~N}+1) * \mathrm{P}_{\mathrm{ACK}} * \\
& \left(1-\mathrm{P}_{\mathrm{ACK}}\right)^{2}+\ldots \\
= & \mathrm{P}_{\mathrm{ACK}}+\mathrm{P}_{\mathrm{ACK}} *\left[\left(1-\mathrm{P}_{\mathrm{ACK}}\right)+\left(1-\mathrm{P}_{\mathrm{ACK}}\right)^{2}+\left(1-\mathrm{P}_{\mathrm{ACK}}\right)^{3}+\ldots\right]+ \\
& \mathrm{P}_{\mathrm{ACK}}\left[\mathrm{~N} *\left(1-\mathrm{P}_{\mathrm{ACK}}\right)+2 * \mathrm{~N} *\left(1-\mathrm{P}_{\mathrm{ACK}}\right)^{2}+3 * \mathrm{~N} *\left(1-\mathrm{P}_{\mathrm{ACK}}\right)^{3}+\ldots\right] \\
= & \mathrm{P}_{\mathrm{ACK}}+\mathrm{P}_{\mathrm{ACK}} *\left[\left(1-\mathrm{P}_{\mathrm{ACK}}\right) / \mathrm{P}_{\mathrm{ACK}}+\mathrm{N} *\left(1-\mathrm{P}_{\mathrm{ACK}}\right) / \mathrm{P}_{\mathrm{ACK}}{ }^{2}\right. \\
= & 1+\left(\mathrm{N} *\left[1-\left(1-\mathrm{P}_{\mathrm{b}}\right)^{\mathrm{n}}\right]\right) /\left(1-\mathrm{P}_{\mathbf{b}}\right)^{\mathrm{n}}
\end{aligned}
$$

Selective-Repeat ARQ (SR ARQ)

Buffer

Output Data

Selective-Repeat ARQ (SR ARQ)

Throughput

$$
\begin{aligned}
\mathrm{S} & =(1 / \mathrm{T}) *(\mathrm{k} / \mathrm{n}) \\
& =\left(1-\mathrm{P}_{\mathbf{b}}\right)^{\mathrm{n}} *(\mathrm{k} / \mathrm{n})
\end{aligned}
$$

where

$$
\begin{aligned}
\mathrm{T}= & 1 * \mathrm{P}_{\mathrm{ACK}}+2 * \mathrm{P}_{\mathrm{ACK}} *\left(1-\mathrm{P}_{\mathrm{ACK}}\right)+3 * \mathrm{P}_{\mathrm{ACK}} *\left(1-\mathrm{P}_{\mathrm{ACK}}\right)^{2} \\
& +\ldots \\
= & \mathrm{P}_{\mathrm{ACK}} \sum_{i=1}^{\infty} \mathrm{i} *\left(1-\mathrm{P}_{\mathrm{ACK}}\right)^{\mathrm{i}-1} \\
= & \mathrm{P}_{\mathrm{ACK}} /\left[1-\left(1-\mathrm{P}_{\mathrm{ACK}}\right)\right]^{2} \\
= & 1 /\left(1-\mathrm{P}_{\mathbf{b}}\right)^{\mathrm{n}}
\end{aligned}
$$

