R. FirstRanker.couniv-

Signal: A function of ore (or) more irdep.perstibanken bositheld Which Contain some information is called signal

Ex:- Electric Voltage (or) current, such as radio signals,
Tv signal.
System: A system is set of Elements (ar) functional block that are Comected together and. produce an op in response to an ip signal.
Ex:- A audio amplifier, attenuator TV set. transmitter, racier atc.
Cbrification of signals:-
The signals Can be clarified in to two Ports depending upon independent variable (time)
a) Continous Time (CT) signal.
b) Discrete Time (DT) signal.

Both the CT and DT signals can be clarified
9) into following parts.

Firstranker.conedd sigmals
Firstranker'sfsoice www.FirstRanker.com
c) Envexy El power sigral . www.FirstRanker.com
d) Deterministic \& random Signals.

C\&DT signals:-1) A "CT" signal is definced.
Continacesly. w.r.t time.
2) A "DT" signal is defened. only at specifie \&. regular time instant."

$$
h_{5}
$$

Fig: CT\&DI signals.
Continous fuer of time: $7^{r} \times(t)=e^{-a t}$

1) Anlog Cuait piocom er, signal. Wuch
ap-amp. filtus, amplifier eto.
a). Digital act prous DT sigral. such coxcuit ore miroporocinors 'Cauntus, fip -flops etc.

Anlog \& Digital systam:-15
\Rightarrow When amplitude of CT sigral Vaxies Continocesty. it is called: "Anlog secoal."
\Rightarrow whicn. Amplitude op signal. Eates only finite values it is called" "digitial" sgnal. ?
a)

Paciodic \& Non-poriodic sigrals:-
Periodic: A signal sus said to be poriodic of it cupeots at ógullor in tervals:
Non-pxuodic: A sigral is/Said to be non-paio die if it x rot ropat at regeilar inlervals.

Ex: CT for pcriodic

- DT for Non-peridic
www.FirstRanker.com.
Even Signal:- A signal. is said to be Even Signal if invasion of time does not change: the amplitude te

Condition for be cen. $\left\{\begin{array}{l}x(t)=x(-t) \\ \text { signal to be } \\ \hline(n)=x(-n)\end{array}\right.$

Cosine ware is sample of Even sig nat

$$
\cos \theta=\cos (-\theta)
$$

* also called "Symmetric signal"

Odd Signal:-
A Signal is Said to be od signal if inverxion of time axis aloe invars Amplitude of the signal.

$$
\text { Condition for }\left\{\begin{array}{l}
x(t)=-x(-t)^{\prime} \\
x(n)=-x(-n)
\end{array}\right.
$$

$$
\begin{aligned}
& \text { Condition for }) x(t)=-x(x) \\
& \text { Signal to be }(n)=-x(-n) \\
& \text { odd. }
\end{aligned}
$$

D. FirstRankeratsomoalled, anti-symmetric signal. Q $\underbrace{\text { Fittrankerschoice ww.FirstRanker.com www.FirstRanker.com }}$

\Rightarrow Sinc Wait is Example of odd signal
\Rightarrow EEven \& Odd symmetry of the signal have specific hormonic (or) feuq content.
\Rightarrow Even Eodd. symmaly puop fittor dinegon.

$$
x(t)=x_{e}(t)+x_{0}(t)
$$

$$
\begin{aligned}
& +x_{0}(t,)^{2} \\
& \text { oodd: }
\end{aligned}
$$

Euen
Cortinow $\frac{\text { time signal }}{\text { Evin pait: }}=$
Evin part $=x_{e}(t)=y / 2[x(t)+x(-t)]$

$x_{0}(t)<y_{2}[y(t)-y(t)]$ odd pat $x_{0}(t)<\gamma_{2}[y(t)-y(-t)]$

FirstRanker.CO| ${ }^{\text {Firstranker'ond }}|x(n)|^{2}$ for DT signal.

Power of CT\&DT Signal:-

Deterministic and Random Signal.
$\Longrightarrow A$ Deterministic signal Can be Completely. repented be. Mathematical Equation any time

Ex $x(t)=\operatorname{Cos} t \omega t$

$$
x(n)=\cos 2 \pi f_{n}
$$

$\Rightarrow A$ signal which Cont be ueporiented by no Mathenatical Eave Called random signal.
any Man

Hor we ore taking.
\Rightarrow Variancios
\Rightarrow Co-Variance.

Determine whether, the following DT signal are Periodic (ar) not? if periodic determine fundamental
Period.
i) $\cos (0.01 \pi n)=x(n)$
ii) $\cos (3 \pi n)$
iii) $\sin (3 n)$
-v) $\frac{\cos 2 \pi n}{5}+\cos \frac{2 \pi n}{7}$.
vi) $\sin (\pi+0.2 n)$
v) $\cos (n / 8) \cos n \pi / 8$
i) $x(n)=\cos (0.01 \pi n)^{\prime}$

शानn $=0.01 \pi n$ compare with $\times(n)=\cos 2 \pi f_{n}$

$$
f=\frac{0 \cdot 0}{2}=\frac{1}{1200}=k / N
$$

 Periodic, $N=200$

Compare with $x(n)=\cos 2 \pi f^{\prime} n$.

$$
\begin{aligned}
& \cos 2 \pi f^{\prime} \alpha=\cos (3 \pi h) \\
& f=\frac{3 \pi}{2 H}=3 / 2 \\
& f=k / N+N=2
\end{aligned}
$$

$$
\cos 2 \pi f_{h}=\sin 3 \%
$$

$$
f=\frac{\sin 3}{\cos 2 \pi}=k / n
$$

Which is not ratio of two integers.
The signal is non-poriodic
iv)

$$
\begin{aligned}
& x(n)=\cos \frac{2 \pi n}{5}+\cos \frac{2 \pi n}{7} \\
& x(n) \cdot \cos 2 \pi f_{1} n+\cos 2 \pi f_{2} n .
\end{aligned}
$$

$$
2 \not 2 f_{1} x=\frac{2 x x}{5}
$$

$$
f=1 / 5=N_{1}=5
$$

2) $\pi f_{Q} \alpha=\frac{2 \pi \eta}{7}$

$$
f_{2}=1 / 7 \quad N_{2}=7
$$

a) $-\frac{N_{1}}{N_{2}}=5 / 7$ io the ratio of two integers. the sequencer is periodic. The periodic of $x(n)$ is least Common Multiple. of $\mathrm{N}_{1} \xi \mathrm{~N}_{2}$. Hex least Common. Multiple of $N_{1}=5$ and $N_{2}=7$

Therefore. this sequence is periodic with $\begin{array}{r}N=35 \\ N\end{array}$
T. FirstRanker.com//
v) Fix
www.FirstRanker.com
Hoe $2 \pi f_{1} n=n / 8 \Rightarrow f_{1}=\frac{1}{16 \pi}$ which is not rations

$$
\text { 2ा } n=n=n \pi / s \Rightarrow f_{1}=1 / 16
$$

Thus $\cos (n / 8)$ is ron-periodie and $\cos (n \pi / 8)$ is
Periodic. $x(n)$ is non-perioder since it is the product o of Periodic \& non-priode serial:
vi) $x(n)=\sin (\pi+0.2 n)$

Compare with $x(n): \sin (2 \pi f+\theta)$
$\theta=\pi$ I.C play shift \&

$$
2 \pi f_{n}=0.2^{n}
$$

$f=\frac{0.2}{2 \pi}=\frac{1}{10}$ which is not rational.
Hence this itignal so non-perindic.
vii) $x(n): c$

$$
\cos \pi / 4 n+j \sin \pi / 4 n
$$

Compare with, $\times(n)=\cos$ gif $f_{n}+j \sin 2$ il f

$$
\text { Here } \operatorname{sifn}=\pi / 4 n \Rightarrow f=1 / 8=k / N
$$

which is rational.

- Hence this signal is

Periodic with NO 8

(Or) power signals and calculate Energy (or) powort.
a) $x(n):(1 / 2)^{n} v(n)$
c) $x(t)=\operatorname{rect}\left(t / T_{0}\right)$
b) $x(t)=\cos ^{2} \theta_{0} t$
d) $x(t)=\operatorname{rect}\left(t / T_{0}\right) \cos \omega_{0} t$.

We have fallow the given steps:-
(1) Obsowe. The Signal. Carefully. it it 9 s periodic \& infinite deration then-it can be pass signal. Hence. Calculate its pour directly.
(2) If the signal is periodic but of finite duration, then it can be Energy signal. Hence calculate its Energy.
it can be directly
(3) if the signal is not periodic, then it con be Energy
(calculate it Energy directly. signal. Hence calculate it Energy directly..
i) $x(n)=(1 / 2)^{n} u(n)$.

This signal is not periodic. Hence as per step 3. Calculate its Energy directly

$$
\begin{aligned}
\text { Calculate } & E=\sum_{n=-\infty}^{\infty}|\times(n)|^{2} \\
& \sum_{n=-\infty}^{\infty}\left[(1 / 2)^{n}\right]^{2}=\sum_{n=0}^{\infty}(1 / 4)^{n}
\end{aligned}
$$

 be.

$$
E=\frac{1}{1-1 / 4}=4 / 3
$$

Since. Energy is finite. E non-zero. it is Energy Signal with $E=4 / 3$
ii) $x(t)=\operatorname{rec}\left(t / T_{0}\right)$ The rect $\left(t / T_{0}\right)$

$\operatorname{rect}\left(t / T_{0}\right)$,

$$
= \begin{cases}\text { (t /Tor } & \text { for } \left.\left.T_{0}\right|_{2} \leq t \leq T_{0}\right)_{2} \\ 0 & \text { \&lsechets }\end{cases}
$$

it mo-peridie. Hence if Can be Energy Signal as Per Signal. as per step 3 Hence, Calculate Energy directly

$$
\begin{aligned}
E & =\int_{-\infty}^{\infty} l \times\left.(t)\right|^{2} d t \\
& =\int_{-T_{0} / 2}^{T b / 2}(i)^{2} d t \\
& \mid(t)]\left._{-T_{0} / 2}^{T b}\right|_{2}=T_{0} .
\end{aligned}
$$

This is squared cosine wave, hence it is
Periodic. Therefore this can be periodic signal. As per step 1, Calculate power of this signal directly

$$
P=\lim _{T \rightarrow \infty} 1 / T \int_{-T / 2}^{T / 2}|x(t)|^{2} d t
$$

The given signal $x(t)$: $\cos ^{2} \cos _{3} t$. has Home period.
To ξ_{1} it is rel signal.

$$
P=\lim _{T_{0} \rightarrow \infty} / T_{0} \int_{-T_{0} / 2}^{T_{0} / 2}\left[\cos ^{2} \omega_{0} t\right]^{2} d t
$$

Hence $\left[\cos ^{2} \omega_{0} t\right]^{2}=\cos ^{4} \omega_{0} t$. it can be Expanded by standard trigonometric Gelation.

This term will be alow zera Scene it is integration of

FirstRanker. $\cos _{(0)}^{m}(t)^{T_{0} / L}$
Firstrankelirnchoice $/ T_{0}$ wwwi.FtisptRanker.com
www.FirstRanker.com
N) $x(t)=\operatorname{ract}\left(t / T_{0}\right) \cos \omega_{0} t$

The geven efunction qo the product of cosine. wale \& rect function.

yid follomet

R. FirstRanker.com ^

\rightarrow Coscoot is periodic \& infinite duration signal.
\Rightarrow Basically it is power signal.
$\Rightarrow \operatorname{Cos} \omega_{0} t$ is Mattiplicd. With the rectangular pulse. Hence the resultant signal is Cosine wave of duration $-T_{0} / 2 \leq t \leq T_{0} / 2$
it is assumed that there are Multiple No. of Cycle of cosine wave in. $-T_{0} / 2 \leq t \leq T_{0} / 2$

The final signal is pexioder but finite. devotion. Hence it Can be Energy Signal.

FirstRanker.com ∞_{∞}
Firstranker's choice $E=\int_{-\infty}^{\infty}$

Hroce Enegy is finite $\&$ non-zero. Hence it is Energy slgnal with $E=T 0 / 2$
v) $\quad x(n)=a(n)$.

This sgnal. is priodeic (Scince $u(n)$) oxepeat after Eury sample. and of initinit duration. Hence it. may be powor sigral.

 www.FirstRanker.com
will be

$$
\begin{aligned}
& P: \lim _{N \rightarrow \infty} \frac{1}{2 N+1}(N+1) \\
& \frac{\lim _{N \rightarrow \infty}}{} \frac{N+1}{2 N+1}: \lim _{N \rightarrow \infty} \frac{1+1 / N}{2+1 / N} \text { !/2 }
\end{aligned}
$$

The pow or, is finite \& ron-zero. hence unit step function is power signal with $=P=1 / 2$

Elementry Signal.
\Rightarrow standard signal are used for the analysis of System
\rightarrow Thess standard sigralare.
a) Unit step function.
b) Unit impute function.
c) unit, ramp function.
d) Complex Exponential function.
e) Sinusoidal function.

$$
\begin{array}{r}
\quad \frac{C T}{u(t)=} \begin{array}{l}
\begin{cases}1 & \text { for } t \geq 0 \\
0 & \text { for } t<0\end{cases} \\
\\
\end{array} \underbrace{}_{0} \rightarrow t(t)
\end{array}
$$

$$
\begin{aligned}
& V(n)= \begin{cases}D T & \text { for } n \geq 0 \\
0 & \text { for } n<0\end{cases}
\end{aligned}
$$

chan De Supply. is applied to the
\Rightarrow it 95 geniratid chen, $D c$ supply. is applied to the Orcient.

$$
u(n)=\{0,0,1,1 \cdot 1, \cdots]
$$

2) Unit impulse:-
gt)
Area.
under unit impulx appacches Amplitude of unit sample 1 as its width appeosches zero. Thess it has zero value Emery where Supt $t=0$

$$
\begin{gathered}
\int_{-\infty}^{\infty} \delta(t) d t=1 \quad \xi t \rightarrow 0 \\
\delta(t)=0 \quad \text { for } t \neq 0
\end{gathered}
$$ is ' 1 at $n=0$ \& it has zero value at all. Other Value of n.

$$
\delta(n)= \begin{cases}1 & \text { for } n=0 \\ 0 & \text { for } n \neq 0\end{cases}
$$

3) Unit $\operatorname{Pamp}:$
it is Linearly growing fun for position value of independent variable

$$
r(t)= \begin{cases}t & \text { for } t \geq 0 \\ 0 & \text { for } t<0\end{cases}
$$

The amplitude of Every sample increase Linearly with - its number for positive value of " n ".

$$
n(n)= \begin{cases}n & \text { for } n \geq 0 \\ 0 & \text { for } t<0\end{cases}
$$

\Rightarrow The ramp fun indicate Linear relationship.
\Rightarrow It indicate constant current charging of the capaci tor.

Complex Exponential E Sinusoidal. Signals:-
DI
CT

1) it is Exponentially growing (or) decaying signal.

R. FirstBankele.com

Relationshif: b/t the signals:-
(i)

$$
\begin{aligned}
& {[d d t r(t)=u(t)} \\
& d r(t)=d t u(t) \\
& \left\{d r(t)=\int u(t) d t\right. \\
& r(t)=\int u(t) d t
\end{aligned}
$$

- Relation b/w unitstep \& unit ramp Signal 1
(or)

$$
u(t)=\int 8(t) d t
$$

intriscuel
Ex . The derviative of the following Sigral.

$$
\begin{aligned}
& \text { i) } x(t)=u(t)-u(t-a), \quad, a>0 \\
& \text { 2) } x(t)=t[u(t)-u(t-a)], a>0 \\
& \text { 3) } x(t)=\operatorname{sgn}(t)=\left\{\begin{array}{l}
1 \quad t>0 \\
-1<0
\end{array}\right. \\
& \text { 1) } d \int_{d t} x(t)=\frac{d}{d t}[u(t)-u(t-a)] \\
& +\frac{d}{d t} u(t)-d / d t u(t-a) \\
& r \delta(t)=\delta(t-a)
\end{aligned}
$$

i)

$$
\begin{aligned}
\frac{d}{d t} x(t) & =\frac{d}{d t}[t[u(t)-u(t-a)] \\
y(t) & =u(t)-u(t-a) \\
\frac{d}{d t} x(t) & =\frac{d}{d t}[t y(t)] \\
& \frac{d}{d t} t y(t)=t \frac{d}{d t} y(t)+v(t) \frac{d}{d t} \cdot t \\
& t[\delta(t)-\delta(t-a)]+y(t) \cdot 1= \\
t & {[\delta(t) \text { www.rirstinanker.com }}
\end{aligned}
$$

Transformation in independent variable of ingral.
Independent Variable t'(or) in Can be Muttipulaiu
b) i) Delay Advancing
2) Time folding,
8) Time Scaling.

1) Delay Advancing
unit step function.
unit step function delayed by 2 units.

$$
\dot{u}(t)=\left\{\begin{array}{l}
\text { for } t \geq 0 \\
0 \text { for } t<0
\end{array}\right.
$$

Genit step function advanced by $\frac{\text { units }}{-2}$ $u(t+2)$

FirstRankericom advanced it is shifted host.

${ }^{2}$) when function is delay it is Shifted, Right.
2) Time folding:-

The time folding Opoation is used in Convola Lion. Consider the Continous time Signal. $x(t)$. Then mistime folded signal. is obtained by epa ling "t "with "-t" ie ult

RifirstRanker.com

Pime Scalling on CT \&. DT Uignal.
Precerdence Rele for Time shitting E time Scaling

Ruler
5) fuert do the shifing opration. \Rightarrow then do the time scalling Opeation.
$x(t)$ is rectangular pulse of amplitude deration $-1 \leq t \leq 1$
ste 1:- Shift $x(t)$ to Left by, 3 , to get $x(t+3)$.

(b) $t \times(2 t+3)$

Step 2: Compoun $x(t+3)$ by' 2 to get $\times(2 t+3)$.

The $x(2 t+3)$ of fig (c) is of led in time to

- FirstRanker.COThe io show fig given below. Firsfonkex ch bite ! - www.FirstRanker.com

Transformation on Amplitude of the Signals.
The Amplitude of the stgral. Can be changed with amplitude Sculling. Consider the unit Step function $u(t)$. Let

$$
y(t)=2 u(t)
$$

Hex amplitude, of cent step function is. This function is Skected in. fig (b) Observe that the amplitude of step function'2". Similarly negative amplitudes are also possible. Comider.

$$
N(t)=-2 u(t)
$$

This fan is skated in fig (c) Obscome that the step function hos - ve amplitude ire -2^{*}

Unit step function

steptan with amplicude:'2 (positive)

Step fundian with amplitudi 2 (Negatiue)
Amplitude Scalling can alno be pexformod on discrete tiens signal. Considu the unit step. Sequence $u(n)$ Let. $\quad y(n)=2 u(n)$.
$x_{1}(-1)$ \& $x_{2}(t)$. be the two Continous time
signals. Then addition. of $x_{1}(t) \& x_{2}(t)$. ant be give in as,

$$
y(t)=x_{1}(t)+x_{2}(t)
$$

Similarly, the sulstraction of $x_{1}(t) \xi_{1} x_{2}(t)$ is given as.

$$
\begin{aligned}
& \text { subtraction } \\
& Y(t): x_{1}(t)-x_{2}(t) \rightarrow C T
\end{aligned}
$$

$$
y(n)=x_{2}(n)=x_{2}(n) \longrightarrow D T
$$

Multiplication \& Decision:-
Let- $x_{1}(t) \& x_{2}(t)$ are Continous signal then thea Multiplication. Gaien as:

$$
\begin{aligned}
& y(t): x_{1}(t) \cdot x_{2}(t) \\
& y(n)=x_{1}(n) \cdot x_{2}(n) \\
& y(t)=\frac{x_{1}(t)}{x_{2}(t)} \\
& y(n)=\frac{x_{1}(n)}{x_{2}(n)}
\end{aligned}
$$

Differentiation \& Integration:-
Let $x(t)$ be the Continows time signal. Then its differentiation. w.r. to given as

Let the current it) is following through an inducclar the voltage across it will be

$$
V(t)=L \frac{d}{d t} i(t)
$$

Here $y(t)$ is integration of $x(t)$, integration is used to represent voltage across the capacitor " c "

$$
v(t)=\frac{1}{c} \int_{-\infty}^{t} f(s) d s
$$

Problem:-
Draw the waveform represented by following step function.
a) $f_{1}(t)=2 u(t-1)$
b) $f_{2}(t)=-2 u(t-2)$
d) $f(t)=f_{1}(t)-f_{2}(t)$
c) $f(t)=f_{1}(t)+f_{2}(t)$
b)
$f_{1}(t)=2 u(t-1)$.
The above Eau. Represents a unit step function
multiplied by amplitude of 2 . There is a time shift of
lac. This time shift well be towards. positive value

The above Eau ceppesents a unit step fun
Multiplied by. amplitude of -2 . There is time shift of 2 sec. Since the time shift is subtracted it ceil be towards positive value, of fig (b) Shew s the generation of $f_{2}(t)$ of above qu.
3) $f(t)=f_{1}(t)+f_{2}(t)$
$\left.f_{1} \& t\right) \& f_{2}(t)$ Values in the above Equation we are getting $f(t)$

$$
f(t)=2 u(t-1)-2 u(t-2)
$$

IV). $f(t)=f_{1}(t)-f_{2}(t)$.

 Amp tudud

$$
f_{l}(t)=2 u(t-1)
$$

R. FirstRankerserm \& thir propeutios

Firstrâhker's chofeg www.FirstRanker.com www.FirstRanker.com
\Rightarrow A system is a set of Elements (or) functional blaks that ore Connected Fogether \& produce an op in respons e to an if p sigral.

Casification
two types of systems
(1) Continous time system.
(2) Discrete time system.

CT: It handle Continous time sgrals. Anlog fittors amptiferess, attencuators, anlog transmittex \& racieet
DT: it handle discete time signal. computers.
eft. disotmories, shitt rogestars ete.
Printers! Mrooproanor, Mamoreste time syan. camplox of desorete time systam.

Perties.
(1) Dynamicity propperty : statie \& dynamic
(1) Sheft invariance: Time vartant ε inc
(3) Lirearity poropery: Lenear \& non dimarar
(4) cousality proportey Cousal \& non Cam
(5) stability propority: stable \& unstable system
(6) Invatibility propectys Invausible \& noninversible

- Dyramicity praperty:-
(1) Static System:-

The Continous time system is said to be statec (or) Pyytanyc (memory lor). instantancais) if its op depends unon the present i/ ponly.

Ey

$$
V(t)=R i(t)
$$

Dynamic:
$t-1$
= past value $t \neq$ prainent $t+1$. Futer
The Continaus time system is valu Said to be Deyramic if its opvalues depend.
ifp\& past values.

In dynamic system the $n^{\text {th }}$ op sample Value depend upon $n^{\text {th }} i$ ip sample \& just previous ice (1. $(n-1)^{\text {th }}$ ip samples. This system need to be store the Previous sample. Value.

$$
y(n)=x(n)+x(n-1)
$$

Q. Time In variant E Time Variant System:-

Time invariant - A Continaus time system is time invariant if the time shift in the isp signal result in Corresponding time shift in the op. Ex Nighaday $f(x(t-t))=y(t-t)$, wien time Time Variant: A Continous System is time varient if the time shift in the Ip signal seselt $\operatorname{NA}^{\text {Co co there is }}$ no time slaife in the of thenit is Said to be Time Variant system.

$$
f(x(n-1 c)] \cdot y(t)
$$

Ex temperate in a day. temperature is Vaxice withe time.

Causal:- The system is Said to be Causal if its op at any time depends upon present \& Past if \Rightarrow only.

$$
\text { Ex } \quad Y(n)=x(n): \pi(n-1)
$$

Non Causal:
The system is Said to be Non Causal if O/P at any time depends us on present, past, future i p. values.

$$
y(n): x(n)+x(n-1)+x(n+1)
$$

Linear E Non-Linear system:-
Linear: A system is Said to be linear if it Satrofiy the super position principle.

Super position principle = Sum of
ip is Equal to the cum of the two induridue
$9 \mid p$.

$$
\begin{array}{r}
f\left(a_{1} x_{1}(t)+a_{2} x_{2}(t)\right]=a_{1} y_{1}(t)+ \\
a_{2} y_{2}(t)
\end{array}
$$

If it don't Satisfy the supper position. paanciper.

$$
\begin{aligned}
& y_{1}(t)=f\left(x_{1}(t)\right) y_{2}(t): f\left(x_{2}(t)\right) \\
&\left.f\left(a_{1}(t)+a_{2} v_{2}(t)\right]=a_{1} y_{1}(t) t(t)\right]
\end{aligned}
$$

Stable E Unstable System:
When. Eure bounded, isp produces bound ac opp then the system is "stable.". bounded ip then it is constable".

Problem
Determine whether the following Continous time system are stable (or) not?

$$
\begin{aligned}
& \text { are stable (or) not? } \\
& \text { i) } y(t)=t \times(t) \text { \& } y(t)=x(t) \sin 100 \pi t
\end{aligned}
$$

i) $y(t)=t x(t)$
\Rightarrow Here Let $x(t)$ be bounded And, $t \rightarrow \infty, y(t) \rightarrow \infty$
\Rightarrow t \Rightarrow Here $x(t)$ is Multiplied by't'.
i) $y(t)=x(t) \sin 100 \pi t$

Let $x(t)$ is bounded. Here $x(t)$ is Multiplical by know that value of the sine function

First Ranker. catcher op $y(t)$ is bounded as long as Firstrankews choice d www. firstRanker,com is bounded. Hence Ww. FirstRanker,com is system. sable. FirstRanker.com

Ex.
Determine whether. the following discrete time eyslant are stable (or) not?

$$
\begin{aligned}
& \text { or stable (or) not? } \\
& \text { i) y }(n)=x(n)+x(n-1)+x(n-1) \text { ii) } y(n)=r^{n} x(n) n_{>1}
\end{aligned}
$$

Problems Determine whether the following Continua time system are Causal (or) non-Causal.
i) $y(t)=x(t) \cos (t+1)$
2) $y(t)=x(2 t) 3) y(t)=x(-1$
2) $\frac{d y(t)}{d t}+10 y(t)+5=x(t)$
5) $y(t)=\int_{-\infty}^{t} x(t) d t$

$$
1 y(t)=x(t) \cos (t+1)
$$

Here Observe that $y(t)$ depends union.
Present ip $p(t)$. A Cosine function Can be Colum ted. at $t+1$. Hence this is Causal system.
2) $y(t)=x(2 t)$

Here, if $t=2$ then.

$$
\begin{gathered}
y(2)=x(2.2) \\
=x(9)
\end{gathered}
$$

P. FirstRanker.com

Finstrankeripchbicet 2 depends on voiture i $p \times 1 a)$. Hence, hes www.FirstRanker.com www.FirstRanker.com
is non-Coural system.
iii) $y(t)=x(-t)$

Here of $t=-2$ then $\quad Y(-2)=x(-(-2))$.
Thus of p depends canon texture i / p. Hence this is non-Caunal system.
v) $\frac{d y(t)^{2}}{d t}+d 10 y(-)^{2}+5=x(t)$

Here Observer that op $y(t)$ expends present isp. Hence this po Cosusal. System.
$v y(t)=\int_{-\infty}^{t} x(t) d t$.
Here opdepends union present \& past isp. Hence this ia Causal system.

Chock whether the following Continous lime system as Linear (or) non-linear.

$$
\begin{aligned}
& \text { as Linear (or) non-linear. } \\
& y_{2}(t)=t \times(t) \\
& y_{1}(t): f\left[x_{1}(t)\right]: x^{2}(t) \\
& \text { 2) } x_{1}(t), y_{2}(t): f\left[x_{2}(t)\right], t x_{2}(t) \\
& \text { Combination of op become. }
\end{aligned}
$$

Hence Linear Combination of olpbeconc.

$$
\begin{aligned}
& \text { Linear } a_{1} y_{1}(t)+a_{2} y_{2}(t) \\
& y_{3}(t): \\
& a_{1} t x_{1}(t)+a_{2} t x_{2}(t
\end{aligned}
$$

$$
+a_{2} t x_{2}(t)
$$

Firstranke Pboice vespowww. to the Lineor Combinat inanker.com ifp becomes.

$$
\begin{aligned}
v_{3}(t): & f\left[a_{1} x_{1}(t)+a_{2} x_{2}(t)\right] \\
& t\left[a_{1} x_{1}(t)+a_{2} x_{2}(t)\right] \\
& a_{1}\left[x_{1}(t)+a_{2} t x_{2}(t)\right.
\end{aligned}
$$

Oncomparing above Eqv $y_{3}(t): y_{3}^{\prime}(t)$. Hence this is a tencar system.
ii) $y(t)=x^{2}(t)$

The op of the system to two ip $x_{1}(t)$ \& $x_{2}(t$

$$
\begin{aligned}
& f\left[x_{1}(t)\right]=2 x_{1}^{2}(t) \\
& f\left(x_{2}(t)=2 x_{2}^{2} t t\right.
\end{aligned}
$$

Hence Linear Combination of thex $0 / p$ becan

$$
\begin{array}{r}
\left.y_{3}(t)=a_{1} y_{1} H\right)+a_{2} y_{2}(t) \\
, a_{1} x_{1}^{2}(t)+2 x_{2}^{2}(t)
\end{array}
$$

Now het is find the ocesponse of the Syslam to combination of i/p

$$
\frac{\left(y_{3}^{\prime}(t)+f\left(a_{1} x_{1}(t)+a_{2} x_{2}(t)\right]\right.}{\text { www.FirstRanker.com }}\left[a_{1} x_{1}(t)+a_{2} x_{2}(t)\right] L
$$

Firstranker's choiced www.FirstRanker.com www.FirstRanker.com

Chuck whether the dollowing Contenous tims system are time time in variont (α) time varient.

$$
\begin{aligned}
& \text { are time time in variant }(\alpha) \text { time varient. } \\
& \text { i) } y(t)=\sin x(t) \quad 2) y(t)=t \times(t) 3) y(t)=A(t) \cos 200 \\
& \pi t
\end{aligned}
$$

Anilloy
Sigach Camber oxppexented in terms of Oghthonanal.

Orthogonality Concept in Vector: fig -1.
All the sigralis are basically Vectors. A vector can be represented in trims of its Coordinate. system en. For Example Conixder the vector f. as shown fig 1. There is another vector x. The dot product of 'f 'and ' x '

$$
f \cdot x=|f||x| \cos \theta
$$

Here ' θ 'is angle $b / \omega f_{\varepsilon} x$.
In the above fig' c ' x is the Component of Vector ' f ' along' x '. In other words ' $c x$ ' is the Projection of ' f^{\prime} 'on ' x '. Here \&'can be Expunged as vector addition as.

$$
f=c x+c
$$

Here 'e 'is an Error valor. Note ce' is mini only it is perpendecetar.

Perpendicular. In this Coax observe that

(a)
ign $c_{1} \& c_{2}$ are greater than c.
But $\varepsilon \varepsilon_{1} \varepsilon_{2}$ are greater than C. Here ' C ' is minimum Only when it is fr to ' x '. The Compony of f along sc is $C x$. it is also given as $|f| \cos o$.

$$
C|x|=f \cos \theta
$$

Multiplying both side by $|x|$

$$
C|x|^{2}=|f|(x \mid \cos \theta
$$

R.H.S Of above Eave. represents the dot product of vector f \& x. Hence.

$$
\begin{aligned}
& c|x|^{2}=f \cdot x \\
& c \cdot 1 /|x|^{2} f \cdot x \\
& x \cdot x=|x|^{2}, e \cdot \frac{f \cdot x}{x \cdot x} \\
& \text { xanker.com }
\end{aligned}
$$

R. FirstRanker.com
dixcoill be Canceled since f. $x \xi$ www.FirstRanker.com wWw.FirstRanker.com X. x are vector products.
fig $2(a) \& 2 b)$ Observe that $c_{1} x$ will be zero when ' f ' is tr to ' x '. In other words, will not have Component along' x ' then. ' f' and ' x ' are tr to Each other.
Hence the dot product $f: x$, f
will zeroi.e
$f . x:|f||x| \cos \theta$
$|f||x| \cos 90^{\circ}: 0$
The vector 'find' x ' are said to be Orthogonal. if their dot product is zero. In other word, veto are Orthogonal. it they are Mutually perpendicular.

Drthogoralily in signals:-
Now let us apply the Orthogonality conapt of Vectors to real signals. Let us Consider signal $f(t)$ to be represented in terms of $x(t)$ Our an interval triste

$$
e(t)=f(t)-c \times(t)
$$

\Rightarrow Minimum value of $e(t)$ will give best aphis mation of $f(t)$ in $x(t)$.
\rightarrow Minimum value of $\varepsilon(t)$, minimum Energy of $e(t)$ (or) mean square value of $e(t)$ serves apples Peale Measure.

Hence for Minimum Energy of $c(t)$. representation of $f(t)$ in $x(t)$ witt better.

Energy of eft) will be.

$$
E e^{2} \int_{t_{1}}^{t_{2}} e^{2}(t) d t
$$

And Mean, square value of $e(t)$ will be given

$$
\begin{aligned}
& \frac{e^{2}}{e^{2}}=\frac{1}{t_{2}-t_{1}} \int_{t_{1}}^{t_{2}} e^{2}(t) d t \\
& e^{2}(t) \\
& \frac{E_{e}}{t_{2}-t_{1}}
\end{aligned}
$$

Here Ecis Energy of e(t) Over the

$$
E_{c}=\int_{t_{1}}^{t_{2}}[f(t)-c x(t)]^{2} d t
$$

THenethe vadue of e(t) 2 (auer the intonal itntoke2 And $e^{2}(t)$ 1s Mcon Savarer. vadule elt) $]$. Here the value of c'should be sclected such that Ee will be Minimum. Thes Can Obtained by differentiating Ee w.r.to C E Equating it to zero l.e

$$
\text { for Minimum } E_{e}, \frac{d E_{e}}{d c}=0
$$

$$
\begin{aligned}
& \quad \text { i.e } \frac{d}{d c}\left[\int_{t_{1}}^{t_{2}}[f(t)-c x(t)]^{2}\right] d t=0 \\
& =\frac{d}{d c} \int_{t_{1}}^{t_{2}} f^{2}(t) d t-\frac{d}{d c} 2 c f(t) \cdot x(t) d t+\frac{d}{d c} \int_{t_{1}}^{t_{2}} c^{2} x^{2}(t) \\
& \quad d t=0
\end{aligned}
$$

- fert torm is independent of ' c ' hence it will be zero.

$$
\begin{aligned}
& -2 \int_{t_{1}}^{t_{2}} f(t) \cdot x(t) d t+2 C \int_{t_{1}}^{t_{2}} x^{2}(t) d t=2 \\
= & 2\left[-2 \int_{\text {ww.FirstRanker.com }}^{t_{2}} f(t) \cdot x(t) d t+C \int_{t_{1}}^{t_{2}} x^{2}(t) d t=0\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { RirstRanker. } \left.\iint_{\text {Firstranker's choiee }} \int_{t_{1}}^{d}(t) \times(t) d t+c\right)_{\text {ww.FirstRanker.com }}^{L_{1}} x^{2}(t) d t=0
\end{aligned}
$$

$$
\begin{aligned}
& c \int_{t_{t}}^{t_{2}} x^{b_{2}}(t) d t: \int_{t_{1}}^{t_{2}} f(t) x(t) d t
\end{aligned}
$$

Here are clcarly obscrethat above Eavi is Similar to the system Equation.

The Demominator of the above soue vepoerent Energey of $x(t)$. it Can't bezero. Hence numerator munt be zero. to make 'c' 300. If 'c Bero there will: be nocomponent of $f(t)$ along $x(t)$. then $f(t)$ and $x(t)$ are said to be Othe ral Quer an intorval [$\left.t_{1} t_{2}\right]$..e.

$$
\text { Onthogonality } \int_{t_{1}}^{t_{2}} f(t) \times(t) d t=0
$$

D. 1 Firstranankerg (z) Ind $x(t)$ are Complex Signals, Firstankerls ghoiff $f(t)$ www.FirstRanker.oomeen awwwintitustrardker.com then they are Orthogonal. Seen an in over. $\left[t_{1}, t_{2}\right]$

$$
\text { for } \int_{t_{1}}^{t_{2}} f(t) \times(t) d t=0
$$

if $x(t) \& f(t)$ are Orthogonal signal then they are Orthogonal Over an tonal $\left[t_{1}, t_{2}\right]$ if

$$
f(t) x^{*}(t) d t=0(0 r) \int_{t 1}^{t_{2}} f^{*}(t) \times(t) d t=0 \text {. }
$$

$x^{*}(t)$ is complor conjugate of $x(t)$.
Problem Show that the following singnal are Orthog oral Our an intaval $[0,1]$

$$
\begin{aligned}
& \text { anal }[0,1] \\
& f(t)=1, x(t)=\sqrt{3}(1-2 t]
\end{aligned}
$$

So). We know that the Signals are Orthogonal of

$$
\begin{gathered}
\int_{t_{1}}^{t_{2}} f(t) \times(t)=0 \\
\int_{t_{1}}^{t_{2}} f(t) \times(t) d t=\int_{0}^{1} 1[\sqrt{3}(1-2 t)] d t \\
\int_{\text {www.FirstRanker.com }}^{1} \sqrt{3} d t-\int_{0}^{1} 2 \sqrt{3} t d t
\end{gathered}
$$

$$
\sqrt{3} \cdot[t]_{0}^{1}-2 \sqrt{3}\left[\frac{t^{2}}{2}\right]_{0}^{1}=0 .
$$

Thess the two given signal. are Orthogonal our intoval $[0,1]$.
2) A rectangular function is defined as.

$$
f(t)= \begin{cases}A & \text { for } 0 \leq t \leq \pi / 2 \\ -A & \text { for } 0 \pi / 2 \leq t \leq 3 \pi / 2 \\ A & \text { for } \pi / 2 \leq t \leq 2 \pi\end{cases}
$$

Approximate above ben by $A \cos$ b/w the interval. (0.2π) Such that Mean Sauce Euros. is Minimum.

Sol $f(t)=c \times(t)$

$$
\begin{array}{r}
\text { Here } c=\int_{t_{1}}^{t_{2}} \frac{f(t) x(t) d t}{\int_{t_{1}}^{t_{2}} x^{2}(t) d t}=A \cos t \int_{0}^{\pi / 2} A \cdot A \cos t d t+\int_{\frac{\pi}{2}}^{\frac{3 \pi}{2}}(-A) A \cos t \\
\\
\quad+\int_{01 / 2}^{\pi / 2} A \cdot A \cos t d t \\
\left.\int_{0}^{2 \pi} A \cos t\right)^{2} d t
\end{array}
$$

$$
=\frac{A^{2}[\sin \pi / 2-\sin 0]-A^{2}\left[\sin \frac{3 \pi}{2}-\sin \pi / 2+A^{2}[\sin 2 \pi-\right.}{\sin 3 \pi / 2]} \frac{A^{2}}{2}\left[t+\frac{\sin 2 t}{2}\right]_{0}^{2 \pi}
$$

$$
=4 / \pi
$$

Thess $f(t)=4 \pi A \cos t$ is the required Appoxsmatis Orthogonal Signal space:-
Let $x_{1}(t), x_{2}(t) \& x_{3}(t)$ be Orthogonal.
to each other. This Mean. then three signals will be mutually fr to Each other.
it forms a three dimensional, $x_{3}(t)$
signal. Space. such signal. Space. This signal
Space is used to represent any signal lying in that

$$
\begin{aligned}
& { }_{o w w w . F i r s t R a n k e r . c o m / l / L}^{\sin }+A^{2} \sin t \\
& A^{2} \int_{0}^{\pi \pi} \frac{1+\cos 2 t}{2} d t
\end{aligned}
$$

Signal. Space. Any signal $f(t)$ can be represented in this dimensional signal space.
Signal Approximation using Orthogonal unctions
Let us Consider the set of signal which are mutually Orthogonal Ouer an interval [t ic $t_{1} t_{2}$ Thar signals Can represents any signal $f(t)$ ax

$$
\begin{aligned}
& f(t) \cong C_{1} x_{1}(t)+C_{2} x_{2}(t)+\cdots+C_{N} x_{N}(t) \\
& f(t)=\sum_{n=1}^{N} C_{n} x_{n}(t)
\end{aligned}
$$

In the above Eave any two signals $x_{m}(t) \varepsilon_{1} x_{n} t$ are orthogonal our an interval $\left[t_{1}, t_{2}\right]$ ice

$$
\int_{t_{1}}^{t_{2}} x_{m}(t) x_{n}(t) d t= \begin{cases}0 & \text { for } m \neq n \\ E n & \text { for } m \pm n\end{cases}
$$

In the above Eque Obocue that any two different y are orthogonal, when $m=n$ it as the

First Ranker, ,com
Firstranker's choice
norge of the signals i.e En. www.FirstRanker.com
Error (t) in the approximation of Eave is given as $e(t): f(t)-\sum_{n=1}^{N} \operatorname{cn}_{n} x_{n}(t)$

Hence Ever Energy will be

$$
\left.E_{e}=\int_{t_{1}}^{t_{2}} e^{2}(t) d t=\int_{t_{1}}^{t_{2}}\left[f(t)-\sum_{n=1}^{N} c_{n} x_{n} t\right)\right]
$$

Here E_{C} is the fun. of $G_{1}, C_{2}, C_{3} \ldots . C_{N}$ Hence Ec will be Minimized w.r. to C_{i} if

$$
\begin{equation*}
\frac{\partial}{\partial c_{j}}\left\{\int_{t_{1}}^{\frac{\partial E_{e}}{\partial c_{j}}=0}\left[f(t)-\sum_{n=1}^{N} c_{n} x_{n}(t)\right]^{2} d t\right\}=0 \tag{1}
\end{equation*}
$$

Above Eq. will be executed for $i=1,23 \ldots \mathrm{~N}$

$$
\begin{gathered}
\frac{\partial}{\partial c_{j}}\left[\int_{t_{1}}^{t_{2}} f^{2}(t) d t-\int_{t_{1}}^{t_{2}} \sum_{n=1}^{N} 2 c_{n} f(t) x_{n}(t) d t+\int_{t_{1}}^{t_{2}} \sum_{n=1}^{N} c_{n}^{2}\right. \\
\left.x_{n}{ }^{2}(t)\right]=0
\end{gathered}
$$

Hove Eau is Eucuted for $i=1,2,3 \ldots N$ Hoe Obscrue. that erst integration term is - Independent of C, Hire its derivative will be

FirstRanker.com the of Scond and this d Firstranke| Thechoicederumaure www.FirstRanker.com www.FirstRanker.com intagration terms will be non, zoro only when $n=i$ theoe terms wall be Constant \& . their. derivaties are zero.

$$
\begin{aligned}
& \frac{\partial}{\partial C_{i}}\left\{\int_{t_{1}}^{t_{2}} 2 C_{1} f(t) x_{i}(t)+\int_{t_{1}}^{t_{2}} C_{1}^{2} x_{i}^{2}(t) d t\right\} \\
& -2 \int_{t_{1}}^{t_{2}} f(t) x_{i}(t) d t+2 C_{i} \int_{t_{1}}^{t_{2}} x_{i}^{2}(t) d t=0 \\
& C_{i}=\int_{t_{1}}^{t_{2}} f(t) x_{i}(t) d t \\
& \int_{t_{1}}^{t_{2}} t_{2} x_{i}^{2}(t) d t
\end{aligned}
$$

We know that $\int_{t_{2}}^{t_{i}^{2}}(t) d t=$ Ei i.c Energe. 2.
$=$ Hnce above Eque becomas.

$$
C_{i}=\frac{1}{E_{i}} \int_{t_{1}}^{t_{2}} f(t) x_{i}(t) d t \cdot \rightarrow \text { (a) }
$$

Now let ur Consider the Mean Square.
Error in SIgnal approximation wing Orthogonal functions.

The Error Energy is given by Eave.

$$
\begin{gathered}
E_{e}=\int_{t_{1}}^{t_{2}}\left[f(t)-\sum_{n=1}^{N} c_{n} x_{n}(t)\right]^{2} d t \\
=\int_{t_{1}}^{t_{2}} f^{2}(t) d t-2 \int_{t_{1}}^{t_{2}} \sum_{n=1}^{N} c_{n} f(t) x_{n}(t) d t+\int_{t_{1}}^{t_{2}} \\
\sum_{n=1}^{2} c_{n}^{2} x_{n}^{2}(t) d t
\end{gathered}
$$

last integration term is Energy of $x(n)$ i.e E_{n}. And. with the help of Eau (a)
we can write. middle term of above Equation as.

$$
\begin{aligned}
& \int_{t_{1}}^{t_{2}} f(t) x_{n}(t) d t=C_{n} E_{n} \\
& E_{c}=\int_{t_{1}}^{t_{2}} f^{2}(t) d t-2 \sum_{n=1}^{N} c_{n} C_{n} E_{n}+\sum_{n=1}^{N} c_{n}^{2} E_{n} . \\
&= \int_{t_{1}}^{t_{2}} f^{2}(t) d t-2 \sum_{n=1}^{N} C_{n}^{2} E_{n}+\sum_{n=1}^{N} C_{n}^{2} E_{n} .
\end{aligned}
$$

The Naan save Error \& Error Energy as related as.

$$
\overline{e^{2}(t)} \cdot \frac{E_{e}}{t_{2}-E_{1}}=\frac{1}{t_{2}-t_{1}}\left[\int_{t_{1}}^{t_{2}} f^{2}(t) d t-\sum_{n_{1}=}^{N} c_{n}^{2}\right.
$$

In the above EaM. $C_{n}{ }^{2} E_{n}$ is always post ire Hence Error Energy Ge can be reduced if number of tams. N used for reprewnitation are income ideally. Fe $\rightarrow 0 . \& N \rightarrow \infty$ under this Condition. the Orthogonal signal set is Said to be complex.
Closed (or) Complete set of Orthogonal function
The Nan square Error approaches zero as number of terms $C^{2} E_{n}$. are Mede infinite

$$
\begin{aligned}
& 0=\frac{1}{t_{2}-t_{1}}\left[\int_{t_{1}}^{t_{2}} f^{2}(t) d t-\sum_{n=1}^{\infty} C_{n}^{2} E_{n}\right] \text { with } \\
& \overline{Q^{2}(t)}=0 \text { os } N=\infty \\
& \text { www.FirstRanker.com }
\end{aligned}
$$

FirstRanker.com ∞
$\int_{t_{1}} f_{n=1}^{2}(t)$ wistranker's choirs Ranker. com $n n_{n}$
www.FirstRanker.com

With N approaching infinity Eau Can. be written as.

$$
f(t)=\sum_{n=1}^{\infty} \ln _{n} X_{n}(t)
$$

Hoe $x_{1}(t), x_{2}(t) \cdots x_{n}(t)$ is a set of Muterall. Orthogonal. Jundion. it is Said to be complete tor) closed set if there Easts, no function $p(t)$ for which

$$
\int_{t_{1}}^{t_{2}} P(t) x_{n}(t) \cdot d t=0 \quad \text { for } n=1,2 \ldots
$$

if $P(t)$ Girts $\&$. above integral is zero. then Obviously. $p(t)$ must be a member of set $\{x n d t)\}$

For the set of mutually orthogonal signals. $x_{n}(t)$ our an interval $\left(t_{1}, t_{2}\right)$.

$$
\int_{t_{2}}^{t_{2}}(t) x_{n}(t) d t=\left\{\begin{array}{l}
0 \text { if } m \neq n \\
E_{n} \text { if } m=n
\end{array}\right.
$$

For this Complete set, the function $f(t)$

$$
C_{i}=\frac{\int_{t_{1}}^{t_{2}} f(t) x_{i}(t) d t}{\int_{t_{1}}^{t_{2}} x_{i}^{2}(t) d t}=\frac{1}{E_{i}} \int_{4_{1}}^{t_{2}} f(t) x_{i}(t) d t
$$

The set of $x_{n}(t)$ is Called athogonal, basis functions.
Whogonality in Complex functions:-
Consider that the set of signals $x_{1}(t), x_{2}(t)$ $x_{3}(t) \ldots .$. are Complex. then they are Mutually Orthogonal if

$$
\begin{aligned}
& \text { Logonal. if } \\
& \int_{t_{1}}^{t_{2}} x_{m}(t) x_{n}^{*}(t) d t=\int_{t_{1}}^{t_{2}} x_{m}^{*}(t) x_{n}(t) d t \cdot\left[\begin{array}{l}
0 \text { for } \\
E_{n} \text { for }
\end{array}\right.
\end{aligned}
$$

Then $f(t)$ Can be Expressed as,

$$
f(t)=\sum_{n=1}^{\infty} c_{n} x_{n}(t)
$$

Where C_{n} is Given in the Similar bastion

Where E_{n} is green for Complex. Sigralsare.

$$
E_{n}=\int_{t_{1}}^{t_{2}} x_{n}(t) \cdot x_{n}^{*}(t) d t
$$

Figonomctric Fourics Sexies:-
we know that any fen, $f(t)$ can be Expound as

$$
f(t)=\sum_{n=1}^{\infty}\left(n x_{n} \mid t\right)
$$

Hoc $x_{n} H$) represent Orthogonal. signal set.
They are also Called basic unction. This Equis Called. generalized Fourier decries.
$m \neq n$
We have see that the set.

$$
\left\{1, \cos \omega_{0} t \cdot \cos 2 \omega_{0} t \cdots \cos \omega_{0} t, \ldots \text { sin } \omega_{0} t\right. \text {, }
$$

$$
\left.\sin 2 \omega_{0} t \ldots \sin n \omega_{0} t-\cdots\right\}
$$

is Orthogonal Dur the period To. Horewo
is / called fundamental frequency, and $n w_{0}$ is Called $n^{\text {th }}$ harmonic. Thou is DC Component of Cosiest
\rightarrow Trignometric fourier series! T-2
As we know that sinnwot a cosnrwot both are asthog nat over the given interval, Now we choose a composite set of function comisting of a set cos ω_{0} l \& in wot for $(n=0,1,2, \ldots)$ as forms a complete orthogonal set.
\because for $n=0, \sin n \omega_{0} t=0$ \& for $n=1 \cos m \omega_{0} t=1$
The set of orthogonal fur are given as 1, cos wot, cos $2 \omega_{0} t \ldots$ cos $\omega_{0} t . . \sin \omega_{0} t, \sin 2 \omega_{0} t . . \sin n \omega_{0} t$.

Now any $f_{n} f(z)$ can be reprexated in terms of there functions over any interval

$$
\begin{align*}
& (0, \tau)(0 r)\left(t_{0}, t_{0}+T\right)(0 r)\left(t_{0}, t_{0}+\frac{2 \pi}{\omega_{0}}\right) \\
& \Rightarrow f(t)=a_{0}+a_{1}, \cos \omega_{0} t+\ldots \text { an } \cos n \omega_{0} t+\cdots+b_{1} \sin \omega_{0} t+b_{2} \sin 2 \omega_{0} t \\
& +b_{n} \sin 2 \omega_{0} t \\
& f(t)=a_{0}+\sum_{n=1}^{\infty}\left(t_{0}, t_{0}+\frac{2 \pi}{\omega_{0}}\right)
\end{align*}
$$

eq (1) is the ray trignometric fourier series seporerentation of $f(t)$ over the interval $\left(t_{0}, t_{0}+\tau\right)$
where $a_{0}, a_{1} \ldots a_{n}, b_{1}, b_{2} \ldots b_{n}$ are the components of $f(t)$ along the mutually arthogonal set (or) the constant values, os ax given by

As we kate, 1

$$
\begin{aligned}
\text { we katar } & C_{12}
\end{aligned}=\frac{t_{2} f_{1}(t) f_{2}(t) d t}{\int_{1}^{t_{2}} \int_{2}^{2}(t) d t}
$$

$$
=\frac{1}{2} \int_{t_{0}}^{t_{0}+t}\left[1+\cos 2 n \omega_{0} t\right] d t
$$

$$
=\frac{1}{2}\left[t-\frac{\sin 2 n \omega_{0} t}{2 n \omega 0}\right]_{t o}^{t_{0}+t}
$$

$$
=\frac{1}{2}\left[t_{0}+T-t_{0}+\frac{\sin 2 n \omega_{0}\left(t_{0}+T\right)}{2 n \omega 0}-\frac{\sin 2 n \omega_{0} t_{0}}{2 n \omega_{0}}\right]
$$

$$
=\frac{1}{2}\left[T+\frac{\sin \left(2 n \omega_{0} t_{0}+2 n \omega_{0} \frac{2 \pi}{\omega_{0}}\right)}{2 n \omega_{0}}-\frac{\sin 2 n \omega_{0} t}{2 n \omega_{0}}\right]
$$

$$
=\frac{1}{2}\left[T+\frac{1}{2 n \omega_{0}}\left\{\sin \left(2 n \omega_{0} t+4 n \pi\right)-\sin \left(2 n \omega_{0} t_{c}\right)\right\}\right]
$$

$$
=\frac{1}{2}\left[T+\frac{1}{2 n \omega_{0}}\left\{\sin \left(2 n \omega_{0} t_{0}\right)-\sin \left(2 n \omega_{0} t_{0}\right)\right\}\right.
$$

$$
=\frac{1}{2}[T+0]=T / 2
$$

let $\begin{aligned} n=0, & t_{0}^{t o t} f(t) \cos (0) d t \\ a_{0} & =\frac{t_{0}}{t_{0}+T} \cos ^{2}(0) d t \\ & \int_{0}^{t o} \cos ^{t}\end{aligned}$

$$
a_{0}=\frac{t_{0}^{t_{0}^{++}} f(z) d t}{t_{t_{0}^{+\sigma}}^{t_{0}}(1) d t}
$$

$$
\begin{aligned}
& a_{n}=\int_{0}^{t_{0}^{+} t} f(z) \cos n \omega_{0} t d t=\frac{t_{0}^{+t}}{t_{0}^{+} T} f(t) \cos n \omega_{0}^{2} n \omega_{0} t d t d L \\
& a_{n}=\frac{2}{T} \int_{t_{0}}^{t_{0}+T} f(z) \cos n \omega_{0} t d z
\end{aligned}
$$

$$
\begin{aligned}
& a_{0}=\frac{1}{T} \int_{t_{0}^{+T}}^{t_{0}} f(z) d t \\
& \text { \& } b_{n}=\frac{\int_{0}^{t_{0}^{+}} \int_{t_{0}}^{t_{0}^{+T}} f(t) \sin n \omega_{0} t d t}{\sin ^{2} \omega_{0} t d t} \\
& b_{n}=\frac{2}{\tau} \int_{0}^{t_{0}^{+T}} f(t) \sin n \omega_{0} t d t
\end{aligned}
$$

The constant term a_{0} in the average value of $f(t)$ over the interval $\left(t_{0}, t_{0}+T\right)$, x thus a_{0} is the de component of $f(t)$ over this interval.
\rightarrow Alternate form of the trignomelric series:-
we have.

$$
\begin{aligned}
& \text { have } \\
& f(z)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n \omega_{0} t+b_{n} \sin n \omega_{a} t\right) \\
& a_{n} \cos n \omega_{0} t+b_{n} \sin n \omega_{0} t=A_{n} \cos \left[n \omega_{0} t+\phi_{n}\right]
\end{aligned}
$$

where

$$
\begin{aligned}
& A_{n}=\sqrt{a_{n}^{2}+b_{n}^{2}} \quad \infty \\
& \phi_{n}=-\tan ^{-1}\left(\frac{b_{n}}{a_{n}}\right) \\
& f(t)=a_{0}+\sum_{n=1}^{\infty} A_{n} \cos \left(n \omega_{0} t+\phi_{n}\right)
\end{aligned}
$$

the coefficients An are called spectral amplitudes Ψ On is the spectral phase.

$$
\begin{aligned}
& 11 y \quad F_{n}^{t_{10}^{0}} \int_{t_{0}^{+}+\pi}^{t_{0}^{t}} f(t)\left(e^{\beta n \omega_{0} t}\right) d t \\
& F_{n}=\frac{1}{T} \int_{0}^{t_{0}+\tau} f(t) e^{-3 n \omega_{0} t} d t
\end{aligned}
$$

Thus any fr may ber expressed as a discrete sum of expowen--tial functions $\left\{e^{i n \omega_{0} t}\right\},(n=0, \pm 1, \pm 2 \ldots)$ aver an interval to $<t<t_{0}+T$.

$$
\begin{aligned}
& f(t)=\sum_{n=-\infty}^{\infty} F_{n} e^{j n \omega 0 t} \\
& x F_{n}=\frac{1}{t_{0}^{+}} \int_{\text {to }} f(z) e^{-j n \omega 0 t} d t
\end{aligned}
$$

There two eq are referred as fourier series pair
\rightarrow Relation b/w the trignometric a the exponential fourier series:
Now consider an exponential fourier series

$$
\begin{align*}
& \text { Now comider an exponent } \\
& \qquad f(t)=\sum_{n=-\infty}^{\infty} F_{n} e^{j n \omega_{0} t}\left(t_{0}<t<t_{0}+T\right) \\
& F_{0}+F_{1} e^{j \omega 0 t}+F_{2} e^{j 2 \omega_{0} t} . F_{n} e^{j n \omega 0 t}- \tag{1}\\
& F_{-1} e^{j \omega_{0} t}+F_{-2} e^{\rho 2 \omega 0 t .} .
\end{align*}
$$

where $F_{n}=\frac{1}{T} \int_{t_{0}+T}^{t_{0}+T} f(t) e^{-\rho n c s t} d t$
Hl $F_{-n}=\frac{1}{T} \int_{t 0}^{t_{0}^{+}} f(t) e^{i n \omega_{0} t} d t$
from (1) (1) Fin\& F_{-n} are complex conjugates

$$
\text { ie } F_{n}=F_{-n}^{*}
$$

Now let $F_{n}=\alpha_{n}+\rho \rho_{n}$

$$
\begin{equation*}
F_{-n}=\alpha_{n}-j \beta_{n} \tag{4}
\end{equation*}
$$ adding there twe www.FirstRanker.com \qquad

$$
\begin{aligned}
& \alpha_{n}=\frac{1}{2}\left(F_{n}+F_{-n}\right) \otimes \\
& \beta_{n}=\frac{1}{2 g}\left(F_{n}-F-n\right)
\end{aligned}
$$

(or)

$$
\begin{aligned}
& 2 \alpha_{n}=F_{n}+F_{-n} \otimes \\
& -2 \beta_{n}=+S\left(F_{n}-F-n\right)
\end{aligned}
$$

sub (3) α (4) in eq (A)

$$
\begin{aligned}
& f(t)=F_{0}+\left(\alpha_{1}+j \beta_{1}\right) e^{j \omega_{0} t}+\left(\alpha_{2}+j \beta_{2}\right) e^{j 2 \omega_{0} t} \\
& +\left(\alpha_{n}+\rho \beta_{n}\right) e^{\rho n \omega_{0} t} t \ldots\left(\alpha_{1}-\rho \beta_{1}\right) e^{-\rho \omega_{0} t_{t}} \\
& \left(\alpha_{2}-\rho \beta_{2}\right) e^{-\rho 2 \omega_{0} t} \ldots\left(\alpha_{n}-\rho \beta_{n}\right) e^{-\rho n \omega_{0} t}+. . . \\
& f(t)=F_{0}+\left[\left(\alpha_{1} e^{\rho \omega_{0} t}+\alpha_{2} e^{j 2 \omega_{0} t} \ldots \alpha_{+1} e^{-j \omega_{0} t}+\alpha_{+2} e^{-j 2 \omega_{0} t}\right.\right. \\
& \left.\alpha_{n} e^{j n \omega_{0} 2}+\alpha_{n} e^{\text {jncoot }}\right) \\
& +\rho\left(\beta_{1} e^{j \omega 0 t}+\beta_{2} e^{j 2 \omega_{0} t}+\cdots \beta_{n} e^{j n \omega_{0} t}+\beta_{+1} e^{-j \omega 0 t}\right. \\
& \left.\left.+\beta_{+2} e^{-j 2 \omega_{0} t} \ldots \beta_{+n} e^{-j n \omega_{0} t} \ldots\right)\right] \\
& f(t)=F_{0}+\sum_{n=-\infty}^{\infty}\left[\ln \left(e^{j n \omega_{0} t}+e^{-j n \omega_{0} t}+j \beta_{n}\left(e^{j n \omega_{0} t}-e^{-j n \omega_{0} t}\right)\right]\right. \\
& f(t)=F_{0}+\sum_{n=-\infty}^{\infty}\left[2 \alpha_{n}\left(\frac{e^{j n \omega_{0} t+e^{-j n} \omega_{0} t}}{2}\right)+g^{2} 2 \beta_{n}\left(\frac{e^{j n \omega_{0} t}-e^{-j n \omega_{0} t}}{2 \xi}\right]\right. \\
& P(t)=F_{0}+\sum_{n=-\infty}^{\infty}\left[2 \alpha_{n} \cos n \omega_{0} t-2 \beta_{n} \sin n \omega_{0} t\right]
\end{aligned}
$$

Now compare this with the sandard trighometrie en

$$
f(t)=a_{0}+\sum_{n=-\infty}^{\infty}\left(a_{n} \cos n \cos t+b_{n} \sin n \omega_{0} t\right)
$$

$$
\begin{aligned}
(t) & =a_{0}+\sum_{n=-\infty} \\
& \Rightarrow F_{0}=a_{0}\left|2 \alpha_{n}=a_{n}\right|-2 \beta_{n}=b_{n}
\end{aligned}
$$

$$
\begin{aligned}
& a_{0}=F_{0} \\
& a_{n}=2 \alpha_{n}=F_{n}+F_{-n} \\
& b_{n} \because-2 f_{n}=j\left(F_{n}-F_{-n}\right)
\end{aligned}
$$

This is the representation of trignometric interns of exponential Ny we can " exponential in term of trignometric $\&$ is

$$
\begin{gather*}
a_{n}=F_{n}+F_{n} \quad b_{n}=\rho\left(F_{n}-F_{-n}\right) \\
\Rightarrow \frac{b_{n}}{\rho}=F_{n}-F_{-n} \\
a_{n}=F_{n}+F_{-n}-\left(5 \Rightarrow-I b_{n}=F_{n}=F_{-n}\right.
\end{gather*}
$$

Adding \& subtracting (5) \&5 we get

$$
\begin{aligned}
& F_{n}=\frac{1}{2}\left[a_{n}-j b_{n}\right] s \\
& F_{-n}=\frac{1}{2}\left[a_{n}+j b_{n}\right]
\end{aligned}
$$

\rightarrow Rep resentation of a periodic fun by the fourier series over the entire interval $(-\infty$ trot $<\infty)$:

Up to know we represent a given $f n f(t)$ by the $F S$ over a finite interval $\left(t_{0}, t_{0}+T\right.$) \& outside shis interval, the fur its corresponding F s are need not be equal. This equality blow $f(z)$ os its series holds over the interval $\left(t_{0}, t_{0}+\tau\right)$. Now we want that this equality holds over the entire interval $(-\infty<t<\infty)$

Now we cowrider some function $f(t)$ of its exponeution F.S representation over an interval (to, to $+T$)

$$
\begin{equation*}
f(t)=\sum_{n=-\infty}^{\infty} F_{n} e^{j n \omega_{0} r}\left(t_{0}<t<t_{0}+\tau\right) \tag{1}
\end{equation*}
$$

where $\omega_{0}=\frac{2 \pi}{T}$
The two sides of the equation need not be equal outside this interval.

Let the right-hound side of (t) be $\phi(t)$
Thus $f(t)=\sigma(t) \quad\left(t_{0}<t<t_{0}+\tau\right)$.
adding there fowwe.FirstRanket.com

$$
\begin{aligned}
& \alpha_{n}=\frac{1}{2}\left(F_{n}+F_{-n}\right) \Delta \\
& \beta_{n}=\frac{1}{2 j}\left(F_{n}-F-n\right)
\end{aligned}
$$

(or)

$$
\begin{aligned}
2 \alpha_{n} & =F n+F-n g \\
-2 \beta_{n} & =+J(F n-F-n)
\end{aligned}
$$

sub (3) α (4) in eq (A)

$$
\begin{aligned}
& f(t)=F_{0}+\left(\alpha_{1}+j \beta_{1}\right) e^{j \omega_{0} t}+\left(\alpha_{2}+j \beta_{2}\right) e^{j 2 \omega_{0} t} \\
& +\left(\alpha_{n}+j \beta_{n}\right) e^{j n \omega_{0} t} t \ldots\left(\alpha_{1}-j \beta_{1}\right) e^{-j \omega_{0} t}+ \\
& \left(\alpha_{2}-\rho \beta_{2}\right) e^{-\rho 2 \omega_{0} t} \ldots\left(\alpha_{n}-\rho \beta_{n}\right) e^{-\rho n \omega_{0} t}+. . . \\
& f(t)=F_{0}+\left[\left(\alpha_{1} e^{j \omega_{0} t}+\alpha_{2} e^{j 2 \omega_{0} t} \ldots \alpha_{+1} e^{-j \omega_{0} t}+\alpha_{+2} e^{-j 2 \omega_{0} t}\right.\right. \\
& \left.\alpha_{n} e^{j n \omega_{0} \%}+\alpha_{+n} e^{j n \omega 0 t}\right) \\
& +\rho\left(\beta_{1} e^{j \omega 00 t}+\beta_{2} e^{j 2 \omega_{0} t}+\cdots \beta_{n} e^{j n \omega_{0} t}+\beta_{+1} e^{-j \omega_{0} t}\right. \\
& \left.\left.+\beta_{+2} e^{-\beta 2 \omega_{0} t} \ldots . \beta_{+n} e^{-j n \omega_{0} t} \ldots\right)\right] \\
& f(t)=F_{0}+\sum_{n=-\infty}^{\infty}\left[\ln \left(e^{j n \omega_{0} t}+e^{-j n \omega_{0} t}+j \beta_{n}\left[e^{j n \omega_{0} t}-e^{-j n \omega_{0} t}\right)\right]\right. \\
& f(t)=F_{0}+\sum_{n=-\infty}^{\infty}\left[2 \alpha_{n}\left(\frac{e^{j n \omega_{0} t+e^{-j n \omega_{0} t}}}{2}\right)+g^{2} 2 \beta_{n}\left(\frac{e^{j n \omega_{0} t}-e^{-j n \omega_{0} t}}{2 j} .\right.\right. \\
& P(t)=F_{0}+\sum_{n=-\infty}^{\infty}\left[2 \alpha_{n} \cos n \omega_{0} t-2 \beta_{n} \sin n \omega_{0} t\right]
\end{aligned}
$$

Now compare this with the standard trignometrie on

$$
\begin{aligned}
& f(t)=a_{0}+\sum_{n=-\infty}^{\infty}\left(a_{n} \cos n \cos t+b_{n} \sin n \omega_{0} t\right) \\
& \qquad 1-\alpha_{n}=a_{n} \mid-2 \beta_{n}=b_{n}
\end{aligned}
$$

$$
\begin{aligned}
(t) & =a_{0}+\sum_{n=-\infty}\left(a_{n} \cos n \omega_{0}\right. \\
& \Rightarrow F_{0}=a_{0}\left|2 \alpha n=a_{n}\right|-2 \beta n=b_{n}
\end{aligned}
$$

Firstanker's $\phi(t)=\sum_{\text {choice }}$ Fine Www.Firstranker.comes of Www.FirstRanker.com
Now comrider the f_{n} ' $\phi(t+T)$ ',

$$
\begin{aligned}
& \phi(t+T)=\sum_{n=-\infty}^{\infty} F_{n} e^{j n \omega_{0}(t+T)} \\
&=\sum_{n=-\infty}^{\infty} F_{n} e^{j n \omega_{0} t} e^{j n \omega_{0} T} \\
& \phi(t+T)=\sum_{n=-\infty}^{\infty} F_{n} e^{j n \omega_{0} t} e^{j 2 \pi n} \\
& \phi(t+T)=\sum_{n=-\infty}^{\infty} F_{n} e^{i n \omega_{0} t}=\phi(t) \\
& \phi(t+T)=\phi(t)
\end{aligned}
$$

i.e, the $f_{n} \phi(t)$ repeats itself after every T seconch, such. f_{n} is called a periodic fr.
ie the exponential (as Trignometric) 'FS depend repeats then - lues every T seconds. Thus if $f(t)$ be a period dic fur of period, 1 , then it can be represented by an exponential (on trignometric) F.S over the entire interval $(-\infty<t<\infty)$.
\therefore A periodic f n $f(t)$ with period τ can be sep by a FS (Cover the entire interval $(-\infty<t<-0)$,

$$
f(t)=\sum_{n=-\infty}^{\infty} F_{n} e^{j n \omega_{0} t}(-\infty<t<\infty)
$$

where $\omega_{0}=\frac{2 \pi}{T}$

$$
\text { \& } F_{n}=\frac{1}{T} \int_{t_{0}}^{t_{0}+T} f(t) e^{-j n \omega_{0} t} d t
$$

\rightarrow Fourier series -Dirichlet's conditions:
The sufficient conditions under which a $s / g f(t)$ can be represented in terms of its fourier series mus satisfy are Called dirichlet conditions. They are
(i) The $f_{n} f(t)$ in a single-valued f_{n} of the variable -t in the phew (t, t_{n})
ie the fr r $f(t)$ must have single value at any instant of time

At to, it has 2 values do it, is not a single valued f_{n}

it is a single valued fo
ii) The $f_{n} f(t)$ has a finite number of discontinutios in the interval $\left(t, t_{n}\right)$

it has no finite umber as discontinuties x it is not possible to find the value of $f(z)$ at such a number of discontinutios

It has finite number of distinuities is the value of $f(t)$ at the distincontinutier can be calculated

$$
f(t=T)=\frac{f\left(T^{-}\right)+f\left(T^{+}\right)}{2}
$$

iii) The $f_{n} f(t)$ has a finite number of miniman as maxima in the interval $\left(t, t_{2}\right)$

It has nub fixed number of maxima marina

It has fixed number of minimal \& maxima (1)
iv) the $f_{n} f(z)$ is absolutely integrable

$$
i e \int_{t_{1}}^{t_{2}}|f(t)| d t<\infty
$$ integrable

Firstronker's choice
where $\phi(t)=\sum_{n=\infty} F_{n} e^{j \text { wwww.Firstranahker.conms of } t^{2} \text { www.FirstRanker.com }}$
Now courider the in ' $\phi(t+T)$ ',

$$
\begin{aligned}
& \phi(t+T)=\sum_{n=-\infty}^{\infty} F_{n} e^{j n \omega_{0}(t+T)} \\
&=\sum_{n=-\infty}^{\infty} F_{n} e^{j n \omega_{0} t} e^{j n \omega_{0} T} \\
& \phi(t+T)=\sum_{n=-\infty}^{\infty} F_{n} e^{j n \omega_{0} t} e^{j 2 \pi n} \\
& \phi(t+T)=\sum_{n=-\infty}^{\infty} F_{n} e^{j n \omega_{0} t}=\phi(t) \\
& \phi(t+T)=\phi(t)
\end{aligned}
$$

ie, the fun $\phi(t)$ repeats itself after every τ seconch, such.
f_{n} is called a periodic fr.
ie the exponential (os trignometric). FS depend repeats then -lues every T seconds. Thus if $f(t)$ be a periodic fur of period, t, then it can be represented by an exponential (orin trignometric) F:S over the entire interval $(-\infty<t<\infty)$.
\therefore A periodic fun frt) with period τ can be sep by a FA
Cover the entire interval $(-\infty<t<-\infty)$,

$$
f(t)=\sum_{n=-\infty}^{\infty} F_{n} e^{j n \omega_{0} t}(-\infty<t<\infty)
$$

where $\omega_{0}=\frac{2 \pi}{T}$

$$
\text { \& } F_{n}=\frac{1}{T} \int_{t_{0}}^{t_{0}+T} f(t) e^{-j n \omega_{0} t} d t
$$

\rightarrow Fourier series - Dirichlet's conditions:
The sufficient conditions under which a $\operatorname{sig} f(t)$ can be represented in terms of its fourier series must satisfy are called dirichlet's conditions. They are
(i) The $f_{n} f(t)$ is a single-valued fin of the variable - t ' in the inter (t, t_{n})
ie the $f u f(t)$ must have single value at any instant of time
properties of Fourier series:

1) linearity properly:

If $x(t) \stackrel{F \cdot S}{\rightleftarrows} a_{n} g$
$y(t) \leftharpoonup F S \leftrightarrows$ bn then

$$
A x(t)+B y(t) \leftharpoonup F S \Longleftrightarrow A_{n}+B b_{n}
$$

proof: we have

$$
\begin{aligned}
& x(t)=\sum_{n=-\infty}^{\infty} a_{n} e^{j n \omega_{0} t} \\
& \infty y(t)=\sum_{n=-\infty}^{\infty} b_{n} e^{i n \omega_{0} t}
\end{aligned}
$$

Also we have, $a_{n}=\int^{+\tau} x(t) e^{-j n \omega o t} d t$

$$
x b_{n}=\int_{T} y(z) e^{-j n \omega_{0} t} d t
$$

let $c(t)=A x(t)+B y(t)$ then,

$$
\begin{aligned}
C_{n} & =\int_{T}[A x(t)+B y(t)] e^{-j n \omega_{0} t} d t \\
& =\int_{T} A x(t) e^{-j n \omega_{0} t} d t+\int_{T} B g(t) e^{-j n \omega_{0} t} d t \\
C_{n} & =A a_{n}+B b_{n}
\end{aligned}
$$

2) Live shifting properly:

If $x(t) \stackrel{F S}{\longleftrightarrow} a_{n}$ then

$$
x\left(t-t_{0}\right) \stackrel{F S}{\longleftrightarrow} e^{- \text {-ncototo }} a_{n}
$$

proof: we have

$$
\begin{aligned}
& F_{s}[x(t)]=a_{n}=\int_{T} k(t) e^{-j n \omega_{0} t} d t \\
& F s\left[x\left(t-t_{0}\right)\right]^{T}=\int_{\tau} k\left(t-t_{0}\right) e^{-j r \omega_{0} t} d t
\end{aligned}
$$

$$
\begin{aligned}
F(s)\left[x\left(t-t_{0}\right)\right. & =\int_{T} x(p) e^{-j n \omega_{0}(p+t) d p} \\
& =\int_{T} x(p) e^{-j n \omega_{0} p} \cdot e^{-j n \omega_{0} t_{0}} d p \\
& =e^{-j n \omega_{0} t_{0}} \int_{T} x(p) e^{-j n \omega_{0} p} d p \\
& =e^{- \text {-incooto }} a n
\end{aligned}
$$

3) lime-heversal properly:

If $x(z) \stackrel{F S}{\stackrel{ }{\longleftrightarrow}}$ an then

$$
x(-t) \stackrel{F}{\leftrightarrows} a_{-n}
$$

Proof:

$$
\begin{aligned}
F s[x(t)]=a_{n} & =\int_{T} x(t) e^{-j n \omega_{0} t} d t \\
\text { let } y(t) & =x(-t) \\
F \cdot s[y(t)] & =\int_{T} y(t) e^{-j n \omega_{0} t} d t \\
& =\int_{t} x(-z) e^{-j n \omega_{0} t} d t \\
\text { let } p & =-t \Rightarrow d p=-d t \\
& =\int_{t_{0}+t} x(-t) e^{-j u \omega_{0} t} d t
\end{aligned}
$$

ae have

$$
\begin{aligned}
& p=-t \quad d p=-d t \\
& =\int_{-t_{0}^{+\tau} \tau} x(p) e^{j p n \omega 0}(-d p) \\
& =\int_{t_{0}}^{t_{0}^{+} \pi} x(p) e^{j u \cos p} d p
\end{aligned}
$$

$=a_{-n}$ is the FS coefficiculs of the tine reversal \& aslg are time reversal of the FS coefficients of the corresponding signal.
4) time scaling:

$$
r(t) \stackrel{F S}{\rightleftarrows} a_{n}
$$

then $i(a t) \stackrel{F S}{\longleftrightarrow}$ an but the fundamental F_{q} is a wo

$$
F \subseteq[(x \in t)]=
$$

$k(t)=\sum_{n=-\infty}^{\infty} a_{n} e^{i n \omega_{0} t}$, then

$$
k(\text { at })=\sum_{n=-\infty}^{\infty} a_{n} e^{i n \omega_{0} a t}
$$

where a ' is the scaling factor x
5) frequency shifting:

If $x(t) \stackrel{F S}{\rightleftarrows}$ an then

$$
x(t) e^{j n \omega_{0} t} \longleftrightarrow{ }^{F S} a_{n-m}
$$

proof:

$$
\begin{aligned}
F S[x(t)]=a_{n} & =\int_{<r)} x(t) e^{-j n c o d} d t \\
F S\left[x(t) e^{g m \omega_{0} t}\right] & =\int_{<T)} x(t) e^{g n \omega_{0} t} \cdot e^{-\xi n \omega_{0} t} d t \\
& =\int_{T} x(t) e^{-j(n-m) \omega_{0} t} d t
\end{aligned}
$$

6) Conjugation?

If $x(t) \stackrel{F S}{\leftrightarrows}$ an then

$$
\begin{aligned}
x(t) & { }^{F S} a_{-n} \\
F s[x(t)] & =a_{n}=\int_{2 r J} x(t) e^{-j n \omega_{0} t} d t \\
F s[x(t)] & =\int_{(T)}^{*} x^{*}(t)\left(e^{-j n \omega_{0} t}\right)^{*} d t \\
F s[x(t)] & =\int_{<t)}^{*} x(t) e^{j n \omega_{0} t} d t \\
& =d_{n}^{*}
\end{aligned}
$$

\rightarrow symmetric Condition:

1) It is a periodic fr is symmelsrical about the vertical axis, the cosrrespordi--ing fourier series contains only corine terms.
2) It is a periodic fur is antisymmetsical about the vertical axis, the F s contains sine terms only.

To prove this,
conrider afn $f_{e}(t)$, it is said to be an even f_{n} of it, if $f_{e}(t)=f_{e}(-t)$
\&fo(t) is said to be an odd fr of ' f ' it

$$
f_{0}(t)=-f_{0}(-t)
$$

properties of cen x odd fr:
A product of an even a an odd f_{n} or an odd f_{n}
2) " even os even f_{n}
3) "1 odd α even fur or odd f_{n}
4) u odd x od d . evenfin
problems
\rightarrow Find the cosine representation FS for the signal shown in fig

$$
\begin{aligned}
& \text { we have the trignometric } \\
& f(z)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n \omega_{0} t+b_{n} \sin n \omega_{0} t\right] \\
& a_{0}=\frac{n^{10+t}}{t} \int_{0}^{1+\tau} f(t) d t \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{t}{2 \pi} d t=\frac{1}{2} \frac{8}{T} \\
& a_{n}=\frac{2}{T_{0}^{T}} f(t) \cos n \omega_{0} t d t \\
& =\frac{2}{2 \pi} \int_{0}^{2 t}\left(\frac{t}{2 \pi}\right) \cos (n t) d t \\
& =\frac{1}{2 \pi^{2}}\left[t \int \cos n t d t-\int(i) \frac{\sin n t}{n} d t\right]_{0}^{2 \pi} \\
& =\frac{1}{2 \pi^{2}}\left[\frac{t \sin n t}{n}+\frac{\cos n t}{n^{2}}\right]_{0}^{2 \pi} \\
& =\frac{1}{2 \pi^{2}}\left[0+\frac{1}{n^{2}}-0-\frac{1}{n^{2}}\right]=0 \\
& b_{n}=\frac{2}{T} \int_{0}^{T} f(z) \sin n \omega_{0} t d t \\
& =\frac{2}{2 \pi} \int_{0}^{2}\left(\frac{z}{2 \pi}\right) \sin n t d t \\
& =\frac{1}{2 \pi^{2}} \int_{0}^{2 t} t \sin n t d t \\
& b_{n}=\frac{1}{2 \pi^{2}}\left[z \int \sin n t d t-\int(1) \frac{\cos n t}{n} d t\right]_{0}^{2 \pi} \\
& =\frac{1}{2 \pi^{2}}\left[-\frac{t \cos n t}{n}+\frac{\sin n t}{n^{2}}\right]_{0}^{2 \pi} \\
& =\frac{1}{2 \pi^{2}}\left[\frac{(-2 \pi) \cos 2 \pi n}{n}+0+0+0\right]
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{2 \pi^{2}}\left[\frac{(-2 \pi) \cos 2 \pi n}{n}+0+0+0\right] \\
= & -\frac{1}{\pi n} \cos 2 \pi n=\frac{-1}{n \pi}(1)=\frac{-1}{n \pi} \\
f(t)= & a_{0}+\sum_{n=1}^{\infty}\left[a n \cos n \omega_{0} t+b_{n} \sin n \omega_{0} t\right] \\
= & \frac{1}{2}+\sum_{n=1}^{\infty}\left[0+\frac{-1}{n \pi} \sin n t\right] \\
= & \frac{1}{2}-\sum_{n=1}^{\infty} \frac{1}{n \pi} \sin (n t) \\
\therefore f(t) & =\frac{1}{2}-\frac{1}{\pi} \sum_{n=1}^{\infty} \frac{\sin n t}{n}
\end{aligned}
$$

\rightarrow find out above for exponential F.S.

$$
f(r)=\frac{t}{2 \pi} \text { for } 0 \leqslant t \leqslant 2 \pi
$$

we have, $f(t)=\sum_{n=-\infty}^{\infty} F_{n} e^{\text {jun } \omega_{0} t}$

$$
\begin{aligned}
F_{n} & =\frac{1}{T} \int_{0}^{T} f(r) e^{-j n \omega o t} d t \\
F_{n} & =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\frac{t}{2 \pi}\right) e^{-\rho n \omega 0 t} d t \\
& =\frac{i^{2 \pi}}{4 \pi^{2}} \int_{0}^{2} t \cdot e^{-j n t} d t \\
& \left.=\frac{1}{4 \pi^{2}} \int t \int e^{-j n t} d t-\int \frac{(1) e^{-j n t}}{(-j n)} d t\right] \\
& =\frac{1}{4 \pi^{2}}\left[\frac{+t e^{-j n t}}{-j n}-\frac{e^{-j n t}}{j^{2} n^{2}}\right] \\
& =\frac{1}{4 \pi^{2}}\left[\frac{t e^{-j n t}}{-j n}+\frac{\left.e^{-j n t}\right]^{2 \pi}}{n^{2}}\right]_{0}^{2 \pi} \\
& =\frac{1}{4 \pi^{2}}\left[\frac{2 \pi e^{-j 2 \pi n}}{-j n}+\frac{e^{-j 2 \pi n}}{n^{2}}-0-\frac{1}{n^{2} t}\right]
\end{aligned}
$$

$$
\begin{aligned}
&=\frac{1}{(4 \pi)^{2}}\left[\frac{2 \pi(1)}{-j n}+\frac{1}{n^{2}}-\frac{1}{n^{2}}\right]^{\text {www.FirstRa }} \\
&=\frac{1}{-j 2 \pi n}=\frac{j}{2 \pi n} \\
& \Rightarrow f(t)=\sum_{n=-\infty}^{\infty} F_{n} e^{j n \cos t} \\
&=\sum_{n=-\infty}^{\infty} \frac{j}{2 \pi n} e^{j n t} \\
& f(z)=\frac{j}{2 \pi} \sum_{n=-\infty}^{\infty}\left(\frac{e^{j n t}}{n}\right)
\end{aligned}
$$

\rightarrow Det the trignomatric FS a exponential is of a fully rectified cosine fur shown in fig. क draw the comply spectrum

Let $z_{0}=\frac{-\pi}{2}$

$$
f(t)=\cos \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)
$$

then to $t=\frac{\pi}{2}$

$$
\begin{aligned}
T & =\frac{\pi}{2}-2_{0}=\frac{\pi}{2}+\frac{\pi}{2}=\pi \\
\omega_{0} & =\frac{2 \pi}{T}=\frac{2 \pi}{\pi}=2 \operatorname{sad} d \sec \\
f(t) & =a_{0}+\sum_{n=-\infty}^{\infty}\left(a_{n} \cos n \omega_{0} t+b_{n} \sin \omega_{0} t\right) \\
a_{0} & =\frac{1}{\tau} \int_{0}^{f_{0}+\pi} f(t) d t \\
& =\frac{1}{\pi} \int_{-\frac{\pi}{2}}^{\pi / 2}(\cos t) d t \\
& =\frac{1}{\pi}[+\sin t]_{-\pi / 2}^{\pi / 2} \\
& =\frac{1}{\pi}\left[+\sin \left(\frac{\pi}{2}\right)-\sin (-\pi)=1 /\right.
\end{aligned}
$$

$$
\begin{aligned}
& a_{n}=\frac{2}{t} \int_{t_{0}}^{T} f(z) \cos n \omega_{0} t d t \\
& =\frac{2^{\pi / 2}}{\pi} \int_{-\pi / 2}^{t / 2} \cos t \cos n t d t \\
& =\frac{1}{\pi} \int_{-\pi / 2}^{\pi / 2}[\cos (2 n+1) t+\cos (2 n-1) t] d t \\
& =\frac{1}{\pi}\left[\frac{\sin (2 n+1) t}{(2 n+1)}+\frac{\sin (2 n-1))}{(2 n-1)}\right]_{-\pi / 2}^{\pi / 2} \\
& =\frac{1}{\pi}\left[\frac{\sin (2 n+1) \frac{\pi}{2}}{(2 n+1)}-\frac{\sin (2 n+1)\left(-\frac{\pi}{2}\right)}{(2 n+1)}+\frac{\sin (2 n-1) \frac{\pi}{2}}{(2 n-1)}-\frac{\sin (2 n-1)\left(-\frac{\pi}{2}\right)}{(2 n-1)}\right] \\
& =\frac{1}{\pi}\left[\frac{2 \sin (2 n+1) \frac{\pi}{2}}{(2 n+1)}+\frac{2 \sin (2 n-1) \frac{\pi}{2}}{(2 n-1)}\right] \\
& a_{n}=\frac{2}{\pi}\left[\frac{(-1)^{n}}{(2 n+12}+\frac{(-1)^{n+1}}{2 n-1}\right] \\
& b_{n}=\frac{2}{T} \int_{t_{0}}^{t_{0}^{+T}} f(t) \sin n \omega_{0} t d t \\
& b_{n}=\frac{2}{\pi} \int_{-\pi / 2}^{\pi / 2} \cos t \sin 2 t d t \\
& =\frac{1}{\pi}\left[\int_{-\pi / 2}^{\pi / 2}[\sin (2 n+1) t+\sin (2 n-1) t\} d t\right] \\
& =\frac{1}{\pi}\left[\frac{-\cos (2 n+1) t}{2 n+1}-\frac{\cos (2 n-1) t}{2 n-1}\right]_{-\pi / 2}^{\pi / 2} \\
& =\frac{1}{\pi}\left[\frac{-\cos (2 n+1) \frac{\pi}{2}}{2 n+1}+\frac{\cos (2 n+1)\left(\frac{\pi}{2}\right)}{(2 n+1)}-\frac{\cos (2 n-1) \frac{\pi}{2}}{(2 n-1)}+\frac{\cos (2 n-1)\left(-\frac{1}{2}\right)}{2 n-1}\right]
\end{aligned}
$$

www.FirstRanker.com

$$
\begin{aligned}
& =\frac{1}{\pi}\left[\frac{-\cos (2 n+1) \frac{\pi}{2}}{(2 n+1)}+\frac{\cos (2 n+1) \frac{\pi}{2}}{2 n-1}-\frac{\cos (2 n-1) \frac{\pi}{2}}{(2 n-1)}+\frac{\cos (2 n-1) \frac{\pi}{2}}{(2 n-1}\right] \\
& =\frac{0}{2} \\
& f(z)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n \omega_{0} t+b_{n} \sin n \omega_{0} t\right] \\
& f(t)=\frac{2}{\pi}+\sum_{n=1}^{\infty}\left[\frac{2}{\pi}\left(\frac{(-1)^{n}}{2 n+1}+\frac{(-1)^{n+1}}{2 n-1}\right) \cos 2 n t+0\right]
\end{aligned}
$$

exponenti al F.S:

$$
\begin{aligned}
& f(t)=\sum_{n=-\infty}^{\infty} F_{n} e^{\rho n \omega o t} \\
& F_{n}=\frac{1}{T} \int_{\pi / 0}^{10+T} f(z) e^{-j n \omega_{0} t} d z \\
& F_{n}=\frac{1}{\pi} \int_{-\pi / 2}^{\pi / 2} \cos t \cdot e^{-j 2 n t} d t \\
& =\frac{1}{\pi} \int_{-\pi / 2}^{\pi / 2}\left(\frac{e^{j t}+e^{-j t}}{2}\right) c^{-j 2 n t d z} \\
& =\frac{1}{2 \pi} \int_{-\pi / 2}^{\pi / 2}\left[e^{j t} \cdot e^{-j 2 n t}+e^{-j t} \cdot e^{-j 2 n t}\right] d t \\
& =\frac{1}{2 \pi}\left[\int_{-\pi / 2}^{\pi / 2} e^{-j(+2 n-1) t} d t+\int_{-\pi / 2}^{\pi / 2} e^{-j(2 n+1) t} d t\right. \\
& =\frac{1}{2 \pi}\left[\frac{e^{-j(2 n-1) t}}{-j(2 n-1)}+\frac{e^{-j(2 n+1) t}}{-j(2 n+1)}\right]_{-\pi / 2}^{\pi / 2} \\
& 1\left[e^{-j(2 n-1) L} \cdot e^{-j(2 n+1) t}\right]^{\pi / 2}
\end{aligned}
$$

$$
\begin{aligned}
& \quad \frac{1}{2 \pi}\left[\frac{e^{\rho(2 n-1) \frac{\pi}{2}}-e^{-\rho(2 n-1) \frac{\pi}{2}}}{+\rho(2 n-1)}+\frac{e^{j(2 n+1) \frac{\pi}{2}}-e^{-\rho(2 n+1) \frac{\pi}{2}}}{j(2 n+1)}\right] \\
& =\frac{1}{\pi}\left[\frac{\sin (2 n-1) \frac{\pi}{2}}{(2 n-1)}+\frac{\sin (2 n+1) \frac{\pi}{2}}{(2 n+1)}\right] \\
& F_{n}=\frac{1}{\pi}\left[\frac{(-1)^{n+1}}{2 n-1}+\frac{(-1)^{n}}{2 n+1}\right] \\
& f_{0}=\frac{1}{\pi}\left[\frac{(-1)}{-1}+\frac{1}{1}\right]=\frac{1}{\pi}[1+1]=\frac{2}{\pi}
\end{aligned}
$$

$$
f(z)=\sum_{n=-\infty}^{\infty} F_{n} e^{j n \omega_{0} t}
$$

$$
\begin{aligned}
& f(z)=\sum_{n=-\infty}^{\infty} F_{n} e^{J n \omega_{0} t} \\
& f(t)=\sum_{n=-\infty}^{\infty} \frac{1}{\pi}\left[\frac{(-1)^{n+1}}{(2 n-1)}+\frac{(-1)^{n}}{2 n+1}\right] e^{\rho}{ }^{2 n \cdot t} \\
& \\
& 1\left[(-1)^{n}+(-1)^{n+1}\right]
\end{aligned}
$$

$$
F_{n}=\frac{1}{\pi}\left[\frac{(-1)^{n}}{2 n+1}+\frac{(-1)^{n+1}}{2 n-1}\right]
$$

$$
\angle F_{1}=\frac{1}{\pi}\left[\frac{(-1)^{1}}{3}+\frac{(-1)^{2}}{2-1}\right]
$$

$$
\begin{aligned}
1 & =\frac{1}{\pi}\left[\frac{(-1)}{3}+\frac{(-1)}{2-1}\right] \\
& =\frac{1}{\pi}\left[-\frac{1}{3}+1\right]=\frac{1}{\pi}\left[1-\frac{1}{3}\right]=\frac{1}{\pi}\left[\frac{2}{3}\right]=\frac{2}{\pi}
\end{aligned}
$$

$$
\begin{aligned}
F_{2} & =\frac{1}{\pi}\left[\frac{(-1)^{2}}{4+1}+\frac{(-1)^{2+1}}{4-1}\right] \\
& =\frac{1}{\pi}\left[\frac{1}{5}-\frac{1}{3}\right]=\frac{1}{\pi}\left[\frac{3-5}{15}\right]=\frac{-2}{15 \pi}
\end{aligned}
$$

$$
\begin{aligned}
& f(t)=\frac{2}{\pi}+\frac{2}{3 \pi} e^{j 2 t}-\frac{2}{15 t} e^{j 4 t} \\
& \\
& +\frac{2}{3 \pi} e^{-j 2 t}-\frac{2}{15 \pi} e^{-j 4 t}+
\end{aligned}
$$

Unis the F-S is

$$
\begin{aligned}
& =\frac{0}{2} \\
& f(z)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cdot \operatorname{con} \omega_{0} t+b_{n} \sin n \omega_{0} t\right] \\
& f(t)=\frac{2}{\pi}+\sum_{n=1}^{\infty}\left[\frac{2}{\pi}\left(\frac{(-1)^{n}}{2 n+1}+\frac{(-1)^{n+1}}{2 n-1}\right) \cos 2 n t+0\right]
\end{aligned}
$$

for exponenti al F.S:

$$
\begin{aligned}
& f(t)=\sum_{n=-\infty}^{\infty} F_{n} e^{\text {jucoot }} \\
& F_{n}=\frac{1}{t} \int_{t_{0} / 2}^{n=-\infty+T} f(z) e^{-j n \omega_{0} t} d t \\
& F_{n}=\frac{1}{\pi} \int_{-\pi / 2}^{\pi / 2} \cos t \cdot e^{-j 2 n t} d t \\
& =\frac{1}{\pi} \int_{-\pi / 2}^{\pi / 2 / 2}\left(\frac{e^{j t}+e^{-j t}}{2}\right) c^{-j 2 n t} d t \\
& =\frac{1}{2 \pi} \int_{-\pi / 2}^{-\pi / 2}\left[e^{j t} \cdot e^{-j 2 n t}+e^{-j t} \cdot e^{-j 2 n t}\right] d t \\
& =\frac{1}{2 \pi}\left[\int_{-\pi / 2}^{1 / 2} e^{-j(+2 n-1) t} d t+\int_{-\pi / 2}^{\pi / 2} e^{-j(2 n+1) t} d t\right. \\
& =\frac{1}{2 \pi}\left[\frac{e^{-j(2 n-1) t}}{-j(2 n-1)}+\frac{e^{-j(2 n+1) t}}{-j(2 n+1)}\right]_{-\pi / 2}^{\pi / 2} \\
& =\frac{1}{2 \pi}\left[\frac{e^{-j(2 n-1) t}}{-j(2 n-1)}+\frac{e^{-j(2 n+1) t}}{-j(2 n+1}\right]_{-\pi / 2}^{\pi / 2} \\
& =\frac{1}{2 \pi}\left[\frac{e^{-j(2 n-1) \frac{\pi}{2}}-\frac{e^{-j(2 n-1)\left(-\frac{\pi}{2}\right)}}{-j(2 n-1)}+e^{-j(2 n+1) \pi / 2}-j(2 n+1)}{\text { ww. }} \text {-j(2n-1)} ;\right.
\end{aligned}
$$

Deriving fourier transform from fourier series (or) rep purely of an arbitary fur over the entire interval $(-\infty, \infty)$

As we know that any non periodic signal can be no y -rented in terms of its sum of exp fur over any flitters, (tact $<t_{0}+\tau$) or any periodic signal can be represented inc, $(-\infty, \infty)$.

Now we want to represent an arbitary fur (non periods a sum of exponential in over the entire interval $(-\infty<t c o)$

fig shows the sped rum of a periodic gate fur for sank specific values of T.

If we can obsome the spectrum, then as the period ' I ' is made larger, the fundamental $f q$ becomes smaller. The f_{q} spectrum becomes denser. But the amplitudes of th iq components becomes smaller.
The shape if the spectrum remains unaltered.
Now, consider an arbitary fur $f(2)$, we want to sup this function as a sum of exponential firs over the entree int $(-\infty<t<\infty)$

This can be cochiened by conksucteng a new periodic $f_{n} F_{T}(H$ of period τ, where the $f(f(t)$
 repeats itself for every τ seconds.

Now this $f_{n} f_{T}(z)$ is a periodic f_{n} sit can be represented with exponential $F S$ over the entice interval $(-\infty, \infty)$

In the limit, if T becomes α, then the pulses in the periodic fur repeat after an is' (infinite) Interval.
i-e in the limit $t \rightarrow \infty f_{T}(t)$ o $f(t)$ are same

$$
\operatorname{lt}_{t \rightarrow \infty} f_{T}(t)=f(t)
$$

Thus the $F S$ representing $f_{T}(z)$ over the entire interval awl alto represent $f(t)$ over the entire interval if we take $T \rightarrow \infty$ in this series

The expone $F S$ for $F_{T}(H)$ can be represented by,

$$
f_{T}(z)=\sum_{n=-\infty}^{\infty} F_{n} e^{j n \omega_{0} t}
$$

where $\omega_{0}=\frac{2 \pi}{T}$

$$
\therefore F_{n}=\frac{1}{T} \int_{-T / 2}^{T / 2} f_{T}(t) e^{-\operatorname{sncoot}} d t
$$

Fowier trawfork of signumin:

$$
\begin{aligned}
\operatorname{sgn}(t) & =1, t>0 \\
& =-1, t<0
\end{aligned}
$$

This is not obsolutdy integrable
so, Instead of $\operatorname{sgn}(t)$, we cam cowider the fn $e^{-a l t} \operatorname{sgn}(t)$ as the limit $a \rightarrow 0$

$$
\begin{aligned}
& F[\operatorname{sgn}(t)]=a_{a \rightarrow 0}^{L L} F\left[e^{-a|t|} \operatorname{sgn}(t)\right] \\
& =t_{a \rightarrow 0} \int_{-\infty}^{\infty} e^{-a|t|} s g n(t) d t e^{-j \omega t} \\
& =\operatorname{lt}_{a \rightarrow 0}\left[\int_{0}^{\infty} e^{-a t} c^{-3 \omega t} d t,-\int_{-\infty}^{0} e^{a t} \cdot e^{-3 \omega t} d t\right] \\
& =\operatorname{Lt}_{a \rightarrow 0}\left[\int_{0}^{\infty} e^{-(a+3 \omega) t} d t-\int_{-\infty}^{0} e^{(a-g \omega) t} d t\right] \\
& =\operatorname{Lt}_{a \rightarrow 0}\left[\left.\frac{e^{-(a+j \omega) t}}{-(a+j \omega)}\right|_{0} ^{\infty}-\left.\frac{e^{(a-j \omega) t}}{a-j \omega}\right|_{\infty} ^{0}\right] \\
& =\operatorname{Lt}_{a \rightarrow 0}\left[e \frac{1}{a+j \omega}-\frac{1}{a-j \omega}\right]=\operatorname{Lt}_{a \rightarrow 0}\left[\frac{a-j \omega-a-j \omega}{a^{2}+\omega^{2}}\right] \\
& =\operatorname{lt}_{a \rightarrow 0}\left[\frac{-2 j \omega}{a^{2}+\omega^{2}}\right]=\frac{-2 j \omega}{\omega^{2}}=\frac{-2 j}{\omega}=\frac{2}{j \omega} \\
& 3 g_{n}(2) \longleftrightarrow \frac{2}{\rho \omega} \\
& \text { spectrum }
\end{aligned}
$$

\rightarrow Fourier trousform of step fu! we have,

$$
\begin{aligned}
& u(t)=\frac{1}{2}+\frac{1}{2} \operatorname{sgn}(t) \\
& \operatorname{sgn}(2)=2 u(t)-1 \\
& F(\omega)=F[u(t)]=F\left[\frac{1}{2}\right]+F\left[\frac{1}{2} \text { sgnt }\right] \\
&=\frac{1}{2} F E(1]+\frac{1}{2} F[\text { sgut }] \\
&=\frac{1}{2} 2 \pi \delta(\omega)+\frac{1}{2} \frac{2}{j \omega} \\
& \underbrace{|F(\omega)|}_{\omega}=\pi \delta(\omega)+\frac{1}{j \omega}
\end{aligned}
$$

\rightarrow Inverse F.T\& $\delta(\omega):$

$$
\begin{aligned}
& F(\omega)=\delta(\omega) \\
& \begin{aligned}
& F(z)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(\omega) e^{j \omega t} d \omega \\
&=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \delta(\omega) e^{j \omega g} d \omega \\
&=\frac{1}{2 \pi}(1)=\frac{1}{2 \pi} \\
& F^{-1}[\delta(\omega)]=f(z)=\frac{1}{2 \pi} \\
& F^{-1}[\delta(\omega)]=\frac{1}{2 \pi} \\
& F^{-1}[2 \pi \delta(\omega)]=1
\end{aligned} \\
& \Rightarrow F[1]=2 \pi \delta(\omega)
\end{aligned}
$$

\rightarrow Inuerse Fourier tranfosin of $\delta\left(\omega-\omega_{0}\right)$:

$$
\begin{aligned}
& F(\omega)=\delta\left(\omega-\omega_{0}\right) \\
& F(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(\omega) \\
&=\frac{1}{2 \pi} \int_{-\infty}^{j \omega t} d \omega \\
& E^{-1}\left[\delta\left(\omega-\omega_{0}\right) e^{j \omega t} d \omega\right. \\
&
\end{aligned}
$$

$$
\begin{aligned}
& F^{-}\left[2 \pi \delta\left(\omega-\omega_{0}\right)\right]=e^{j \omega_{0} t} \\
& F\left[e^{j \omega_{0} t}\right]=2 \pi \delta\left(\omega-\omega_{0}\right)
\end{aligned}
$$

\rightarrow F.T \&f cosine signal:

$$
\begin{aligned}
& f(t)=\cos \omega_{0} t=\frac{1}{2}\left[e^{j \omega_{0} t}+e^{-j \omega_{0} t}\right] \\
& F[f(t)]=F(\omega)=F\left[\frac{1}{2}\left\{e^{j \omega_{0} t}+e^{-j \omega_{0} t}\right\}\right] \\
&=\frac{1}{2}\left[F\left[e^{\rho \omega_{0} t}\right]+F\left[e^{-j \omega_{0} t}\right]\right] \\
&=\frac{1}{2}\left[2 \pi \delta\left(\omega+\omega_{0}\right)+2 \pi \delta\left(\omega^{+} \omega_{0}\right)\right] \\
& F\left[\cos \omega_{0} t\right]=\pi\left[\delta\left(\omega+\omega_{0}\right)+\delta\left(\omega-\omega_{0}\right)\right] \\
& \uparrow F(\omega)
\end{aligned}
$$

$\rightarrow F \cdot T$ \& simuriodal signal:

$$
\begin{aligned}
f(t) & =\sin \omega_{0} t \\
& =\frac{1}{2 j}\left[e^{j \omega_{0} t}-e^{-j \omega_{0} t}\right] \\
E[f(t)] & =\frac{1}{2 j}\left[F\left[e^{j \omega_{0} t}\right]-F\left[e^{j \omega_{0} t}\right]\right] \\
& =\frac{1}{2 j}\left[2 \pi \delta\left(\omega-\omega_{0}\right)-2 \pi \delta\left(\omega+\omega_{0}\right)\right] \\
& =\frac{\pi}{9}\left[\delta\left(\omega-\omega_{0}\right)-\delta\left(\omega+\omega_{0}\right)\right] \\
& =j \pi\left[\delta\left(\omega t \omega_{0}\right)-\delta\left(\omega-\omega_{0}\right)\right]
\end{aligned}
$$

\rightarrow Find the F-T of the following

$$
\begin{aligned}
& f(z)=e^{j \omega_{0} t} u(z) \\
& F[u(z)]=\frac{1}{j \omega}+\pi \delta(\omega) \\
& F\left[e^{j \omega_{0} t} u(t)\right]=\frac{1}{j\left(\omega-\omega_{0}\right)}+\pi \delta\left(\omega-\omega_{0}\right)
\end{aligned}
$$

$$
\begin{aligned}
F\left[\sin \omega_{0} t u(t)\right] & =F\left[\left\{\frac{e^{j \omega_{0} t}-e^{-\rho \omega t}}{2 \rho}\right\} u(t)\right] \\
& =\frac{1}{2}\left\{\left[F\left[e^{j \omega_{0} t} u(t)\right]-F\left[e^{-\rho \omega_{0} t} u(t)\right]\right]\right. \\
& =\frac{1}{2 \rho}\left[\left\{\frac{1}{j\left(\omega-\omega_{0}\right)}+\pi\left(\delta\left(\omega-\omega_{0}\right)\right\}-\left\{\frac{1}{j\left(\omega+\omega_{0}\right)}+\pi \delta\left(\omega_{0}+\omega_{0}\right)\right)\right]\right. \\
& =\frac{1}{2 \rho}\left[\frac{1}{j}\left\{\frac{\omega+\omega_{0}-\omega+\omega_{0}}{\left(\omega-\omega_{0}\right)\left(\omega+\omega_{0}\right)}\right\}+\pi\left\{\delta\left(\omega-\omega_{0}\right)-\delta\left(\omega+\omega_{0}\right)\right\}\right] \\
& =\frac{1}{2 \rho}\left[\frac{1}{\rho}\left\{\frac{2 \omega_{0}}{\omega^{2}-\omega_{0}^{2}}+\pi \delta\left(\omega-\omega_{0}\right)-\pi \delta\left(\omega+\omega_{0}\right)\right]\right. \\
& =\frac{\omega_{0}}{\omega_{0}^{2}-\omega^{2}}+\frac{\pi}{2} j\left[\delta\left(\omega+\omega_{0}\right)-\delta\left(\omega-\omega_{0}\right)\right]
\end{aligned}
$$

$\rightarrow f(z)=A \sin \omega_{0} t u(t)$

$$
=A\left[\frac{e^{j \beta \omega_{0} t}-e^{-j \omega_{0} t}}{2 g}\right] u(t)
$$

$$
=\frac{A}{2 j} e^{j \omega_{0} t} u(t)-\frac{A}{2 \rho} e^{-\rho \omega_{0} t} u(t)
$$

$$
\begin{aligned}
F[f f(t)] & =F\left[\frac{A}{2 \rho} e^{j \omega_{0} t} u(t)-\frac{A}{2 g} e^{-j \omega_{0} t} u(t)\right] \\
& =\frac{A}{2 j}\left[\pi \delta\left(\omega-\omega_{0}\right)+\frac{1}{j\left(\omega-\omega_{0}\right)}-\frac{A}{2 j}\left[\pi \delta\left(\omega+\omega_{0}\right)+\frac{1}{j(\omega-\omega 0)}\right]\right. \\
& =\frac{\pi A}{2 \xi}\left[\delta\left(\omega-\omega_{0}\right)-\delta\left(\omega+\omega_{0}\right)\right]+\frac{A}{2}\left[\frac{2 \omega_{0}}{\omega^{2}-\omega_{0}^{2}}\right]
\end{aligned}
$$

\rightarrow F.T of triangular pulse:

$$
\begin{aligned}
& \Delta(t)=\left\{\begin{array}{ll}
1-|t| ;|t| \leq a \\
0 ; & \text { otherwise }
\end{array}\right] \\
& D\left(\frac{t}{\tau}\right)
\end{aligned}=\left\{\begin{array}{l}
1-\frac{2|t|}{\tau} ;|z| \angle \tau / 2 \\
0 ; \text { othercuise }
\end{array}\right] \begin{aligned}
F[\omega] & =F\left[\Delta\left(\frac{t}{\tau}\right)\right] \\
& =\int_{-\tau / 2}^{v^{2}}\left[1-\frac{2|t|}{\tau}\right] e^{-j \omega t} d t
\end{aligned}
$$

FirstRanker.com

Firstranker's choice

$$
\begin{aligned}
&+\frac{e^{-j \omega}}{-j \omega}+j \omega \frac{j}{\gamma \omega} \\
&= \frac{e^{j \omega \pi / 2}}{j \omega}-\frac{e^{-j \omega \pi / 2}}{\delta \omega}=\frac{2}{\tau(j \omega)^{2}}-\frac{e^{j \omega \% / 2}}{/ 3 \omega}+\frac{2}{\tau} \frac{e^{j \omega \tau / 2}}{(j \omega)^{2}}+\frac{e^{-j \omega / 2 / 2}}{j \omega} \\
&+\frac{2}{\tau} \frac{e^{-j \omega \tau / 2}}{}-\frac{2}{\tau} \frac{1}{(j \omega)^{2}}
\end{aligned}
$$

$$
+\frac{2}{\tau} \frac{e^{-j \omega \tau / 2}}{(j \omega)^{2}}-\frac{2}{\tau} \frac{1}{(j \omega)^{2}}
$$

$$
=\frac{-4}{\tau(j \omega)^{2}}+\frac{2}{\tau} \frac{e^{j \omega \tau / 2}}{(j \omega)^{2}}+\frac{2}{\tau} \frac{e^{-j \omega \tau / 2}}{(j \omega)^{2}}
$$

$$
=\frac{2}{\tau}\left[\frac{e^{j \omega \tau / 2}}{(j \omega)^{2}}+\frac{e^{-j \omega \tau / 2}}{(j \omega)^{2}}-\frac{2}{(j \omega)^{2}}\right]
$$

$$
\begin{aligned}
& =\frac{2}{\tau}\left[\frac{e^{j \omega}}{(j \omega)^{2}}+\frac{e}{(j \omega)^{2}}-\overline{(j \omega)^{2}}\right] \\
& =\frac{2}{\tau}\left[\left\{\frac{e^{j \omega \tau / 4}}{j \omega}\right]^{2}+\left\{\frac{\left.e^{-j \omega \tau / 4}\right\}^{2}-2\left\{\frac{e^{j \omega \tau / 4}}{j \omega}\right\}\left\{\frac{e^{-j \omega T}}{j \omega}\right\}}{}\right\}=\left[\begin{array}{l}
j \omega \tau / 4
\end{array}\right]\right.
\end{aligned}
$$

$$
=\frac{2}{\tau}\left[\left\{\frac{e^{j \omega \tau / 4}}{j \omega}-\frac{e^{-j \omega \tau / 4}}{j \omega}\right\}^{2}\right]
$$

$$
4 \frac{2}{\tau}\left[\frac{e^{j \omega \tau / 4}-e^{-j \omega \tau / 4}}{2 j \omega}\right]^{2}
$$

$$
\begin{aligned}
& \int_{-\tau / 2}^{0}\left(1+\frac{2 t}{\tau}\right) e^{-j \omega t} d t+\int_{0}^{\tau / 2}\left(1-\frac{2 t}{\tau}\right) e^{-j \omega t} d t \\
& =\int_{-\tau / 2}^{0}\left(1+\frac{2 t}{\tau}\right) e^{-j \omega t} d t+\int_{0}^{\tau}\left(1-\frac{2 t}{\tau}\right) e^{-j \omega t} d t \\
& =\left[\frac{e^{-j \omega t}}{-j \omega}\right]_{-\tau / 2}^{0}+\frac{2}{\tau}\left[\frac{-t e^{-j \omega t}}{j \omega}-\frac{e^{-j \omega t}}{(j \omega)^{2}}\right]_{-T / 2}^{0}+\left[\frac{e^{-j \omega t}}{-j \omega}\right]_{0}^{2 / 2} \\
& -\frac{2}{\tau}\left[\frac{-t e^{-j \omega t}}{j \omega}-\frac{e^{-j \omega t}}{(j \omega)^{2}}\right]_{0}^{\alpha / 2} \quad j \omega \tau / 2 \\
& =-\frac{1}{j \omega}+\frac{e^{-\rho \omega(-\tau / 2)}}{j \omega}+\frac{2}{\tau}\left[0-\frac{1}{(\rho \omega)^{2}}-\frac{\tau}{2} \frac{e^{+\rho \omega \tau / 2}}{\rho \omega}+\frac{e^{j \omega \tau / 2}}{(\rho \omega)^{2}}\right] \\
& +\frac{e^{-\rho \omega \tau / 2}}{-g \omega}+\frac{y}{\rho \omega}-\frac{2}{\tau}\left[\frac{-\frac{\gamma}{2} e^{-\rho \omega \gamma / 2}}{j \omega}-\frac{e^{-\rho \omega \gamma / 2}}{(\rho \omega)^{2}}+0+\frac{1}{(j \omega)^{2}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \frac{8}{\tau}\left[\frac{\sin (\omega \tau / 4)}{4(\tau / 4)}\right]^{2} \times\left(\frac{\tau}{4}\right)^{2} \\
& =\frac{8}{\tau} \cdot \frac{\tau^{2}}{16}[\operatorname{san}(\omega \tau / 4)]^{2} \\
& =\frac{8}{\tau} \frac{\theta^{2}}{2} \frac{\tau}{2} \operatorname{san}^{2}\left(\frac{\omega \tau}{4}\right) \\
& =\frac{\tau}{2} \operatorname{sinc}^{2}\left(\frac{\omega \tau}{\tau}\right) \\
& F\left[\Delta\left(\frac{t}{\tau}\right)\right]=\frac{\tau}{2} \sin ^{2}\left(\frac{\omega \tau}{4}\right)
\end{aligned}
$$

\rightarrow F.T \& Impulse train:
we have the exponential F.S of unit impute train is

$$
f(t)=\sum_{n=-\infty}^{\infty} \delta\left(t-n T_{0}\right)=\frac{1}{T_{0}} \sum_{n=-\infty}^{\infty} e^{j n \omega_{0} t}
$$

ITXert τ_{0} is the spacing $b(w$ the

$$
\begin{aligned}
F[F(t)] & =F\left[\sum_{n=-\infty}^{\infty} \delta(t-n T)\right] \\
& =F\left[\frac{1}{T_{0}} \sum_{n=-\infty}^{\infty} e^{j n \omega_{0} t}\right] \\
& =\frac{1}{T_{0}} \sum_{n=-\infty}^{\infty} F\left[e^{j n \omega_{0} t}\right] \\
& =\frac{1}{T_{0}} \sum_{n=\infty}^{\infty}\left[2 \pi \delta\left(\omega-n \omega_{0}\right)\right] \\
& =\frac{2 \pi}{T_{0}} \sum_{n=-\infty}^{\infty} \delta\left(\omega-n \omega_{0}\right) \\
& F(\omega)=\omega_{0} \sum_{n=-\infty}^{\infty} \delta\left(\omega-n \omega_{0}\right)
\end{aligned}
$$

\rightarrow ET \& a periodic function:
Generally F_{T} is applicable for a periodic fun, \& $F-T$
If a periodic fur doer not exist,
. It fails to satisfy the condition of absolutely integrability.

But the transform does exit in the limit, lly for $\cos \omega_{0} t \alpha$ sincoot
ie we con assume the periodic fur exists only in the finite interval $(-\pi / 2, \tau / 2) \propto$ in the limit let $\tau \rightarrow \infty$
we can expren a periodic fur $f(t)$ with period r as

$$
f(t)=\sum_{n=-\infty}^{\infty} F_{n} e^{j n \omega_{0} t}
$$

laking F-t on both sids

$$
\begin{aligned}
& \text { Caking } F-t \text { on both } \\
& \begin{aligned}
F[f(r)] & =F\left[\sum_{n=-\infty}^{\infty} F_{n} e^{j n \omega_{0} t}\right] \\
& =\sum_{n=-\infty}^{\infty} F_{n} F\left[e^{j n \omega_{0} t}\right] \\
& =\sum_{n=-\infty}^{\infty} F_{n} 2 \pi \delta(\omega-n \omega 0) \\
\therefore F & F f(t)]=2 \pi \sum_{n=-\infty}^{\infty} F_{n} \delta(\omega-n \omega 0)
\end{aligned}
\end{aligned}
$$

\therefore The FT of a periodic sig courists of impute located at the harmonic $f r$ of the signal \& thestiongtr of each impulse is same as 2π times the value of the corresponding coefficient in the exponential FS
\rightarrow Find the F.T of sequence of equidistant impulses.

Now we cowreder a sequence of equidistant impuhn of unit strength is seperated by $\tau \mathrm{sec}$, is let it be $\delta_{\tau}(t)$

$$
\begin{aligned}
& \delta_{\tau}(z)=\delta(z)+\delta(z-T)+\delta(z+2 \tau) \ldots \\
& +\delta(z+T)+\delta(z+2 T) . \\
& \delta_{T}(z)=\sum_{n=-\infty}^{\infty} \delta(z-n \tau)
\end{aligned}
$$

This is a periodic s / g with period $t x$ then we can find its F is

The F-S $\delta_{+}(Z)$ is

$$
\begin{aligned}
\delta_{T}(t) & =\sum_{n=-\infty}^{\infty} F_{n} e^{\rho n \omega_{0} t} \\
\text { where } F_{n} & =\frac{1}{T} \int_{-T / 2}^{T / 2} \delta_{T}(t) e^{-j n \omega_{0} t} d t \\
& =\frac{1}{T} \int_{-T / 2}^{T / 2} \delta(t) e^{-j n \omega_{0} t} d t \\
F_{n} & =\frac{1}{T}(1)=\frac{1}{T}
\end{aligned}
$$

$$
\begin{aligned}
& \delta_{T}(t)=\sum_{n=-\infty}^{\infty} F_{n} e^{\text {din } \omega_{0} t} \\
& \delta_{T}(t)=\sum_{n=-\infty}^{\infty} \frac{1}{T} e^{i n \omega_{0} t} \\
& \delta_{T}(t)=\frac{1}{T} \sum_{n=-\infty}^{\infty} e^{i n \omega_{0} t}
\end{aligned}
$$

$$
\begin{aligned}
& f(t)=\frac{1}{2 \pi} \int_{-\infty}^{\text {ranker's }} F(\omega) e^{\text {wwi.FisstRanaker.com }} \\
& E=\int_{-\infty}^{\infty} f(t) f(z) d t \\
&=\int_{-\infty}^{\infty} f(t) \frac{1}{2 \pi} \int_{-\infty}^{\infty} F(\omega) e^{j \omega t} d \omega d t \\
&=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(\omega) d \omega \int_{-\infty}^{\infty} f(z) e^{\rho \omega t} d t \\
&=\frac{1}{2 \pi} \int_{2}^{\infty} F(\omega) F(-\omega) d \omega \\
& E=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|F(\omega)|^{2} d \omega \\
& \int_{-\infty}^{\infty} f^{2}(z) d t=\left.\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(\omega)\right|^{2} d \omega
\end{aligned}
$$

www.FirstRanker.com
\therefore The energy of a signal is given by $\frac{1}{2 \pi}$ times the areas under the curve $|F(\omega)|^{2}$

The energy contained in the freq components with in a band of $f_{q}\left(\omega_{1}, \omega_{2}\right)$ is $\frac{1}{2 \pi}$ times the area \&o $|F(\omega)|^{2}$ under the band $\left(\omega_{1}, \omega_{2}\right)$

There is also a band of $\left(-\right.$ se $\left(-\omega_{1}, \omega_{2}\right) f q$ which alto has aloe exactly the save anount of energy ar that
ther the energy contained in the f_{q} band $\left(\omega_{1}, \omega_{2}\right)$ is given by

$$
\begin{aligned}
\Delta E & =2-\frac{1}{2 \pi} \int_{\omega_{1}}^{\omega_{2}}|F(\omega)|^{2} d \omega \\
& =\frac{1}{\pi} \int_{\omega_{1}}^{\omega_{2}}|F(\omega)|^{2} d \omega
\end{aligned}
$$

$\frac{1}{\pi}|F(\omega)|^{2} \rightarrow$ represents the everggy per unit band aiddt's which reprereuts the evergy demily donoted as $s(\omega)$

$$
S(\omega)=\frac{1}{\pi}|F(\omega)|^{2}
$$

\therefore The evergy $\triangle E$ arrociated with components of fz lieing in the iuterval $\left(\omega_{1}, \omega_{2}\right)$ is

$$
\begin{gathered}
\Delta E=\int_{\omega_{1}}^{\omega_{2}} s(\omega) d \omega \alpha \\
E=\int_{0}^{\infty} s(\omega) d \omega
\end{gathered}
$$

\rightarrow Find $F \tau$ \&f $e^{-2 t} u(t-1)$

$$
\begin{aligned}
& F\left[e^{-a t} u(t)\right]=\frac{1}{a+\rho \omega} \\
& F\left[e^{-2 t} u(t)\right]=\frac{1}{2+\rho \omega} \\
& F\left[e^{-2(t-1)} u(t-1)\right]=\frac{1}{2+\rho \omega} e^{-\rho \omega(1)} \\
& e^{2} F\left[e^{-2 z} u(t-1)\right]=\frac{e^{-j \omega}}{2+\rho \omega} \\
& F\left[e^{-2 t} u(t-1)\right]=\frac{e^{-(2+\rho \omega)}}{2+\rho \omega}
\end{aligned}
$$

\rightarrow Find

$$
\rightarrow f(t)=e^{-0.5 t}
$$

\rightarrow F.T coswot

$$
\left.\begin{array}{rl}
F\left[\cos \omega_{0} t\right] & =\int_{T \rightarrow \infty}^{L t} \int_{-\tau / 2}^{\alpha / 2} \cos \omega_{0} t e^{-j \omega t} d t \\
& =L_{T \rightarrow \infty} \int_{-\tau / 2}^{T / 2}\left\{\frac{\left(j \omega_{0} t\right.}{t e^{-j \omega_{0} t}}\right. \\
2
\end{array} e^{-j \omega t} d t\right]
$$

$$
\begin{aligned}
& t e^{-3 t} u(t) \\
& F\left[e^{-3 t} u(t)\right]=\frac{1}{3+j \omega} \\
& f(z) \longleftrightarrow F(\omega) \\
& -j t f(z) \longleftrightarrow \frac{d f}{d w} \\
& t f(t) \longleftrightarrow j \frac{d f}{d \omega} \\
& F\left[z e^{-3 t} u(t)\right]=j \frac{d}{d \omega}\left(\frac{1}{3+j \omega}\right) \\
& =\frac{-j}{(3+j \omega)^{2}}(\rho)=\frac{1}{(3+j \omega)^{2}} \\
& f(a t)=\frac{1}{|a|}+\left(\frac{\omega}{a}\right) \\
& F\left[e^{-0.5 t}\right] \longleftrightarrow \frac{1}{10.51} F\left(\frac{\omega}{0.5}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{2}{r} L_{T \rightarrow \infty}\left[\frac{\sin \left(\omega-\omega_{0}\right) r / 2}{\omega-\omega_{0}}+\frac{\sin \left(\omega+\omega_{0}\right) \tau / 2}{\omega+\omega_{0}}\right] \\
& =\pi \operatorname{Lt}_{T \rightarrow \infty}\left[\frac{2}{-\pi \pi} S a\left(\omega-\omega_{0}\right) \tau / 2+\frac{2}{2 \pi} \delta S_{a}\left(\omega+\omega_{0}\right) \tau / 2\right] \\
& =\pi \operatorname{Lt}_{T \rightarrow \infty}\left[\frac{K}{\pi} S_{a}\left(\omega-\omega_{0}\right) \tau / 2+\frac{k}{\pi} S a\left(\omega+\omega_{0}\right) \tau / 2\right] \\
& =\pi\left[\delta\left(\omega-\omega_{0}\right)+\delta\left(\omega+\omega_{0}\right)\right]
\end{aligned}
$$

$$
\rightarrow f(z)=t e^{-a t} u(z)
$$

$$
F(\omega)=\int_{-\infty}^{\infty} f(t) e^{-j \omega t} d t
$$

$$
=\int_{-\infty}^{-\infty} t e^{-a t} u(t) e^{-j \omega t} d t
$$

$$
=\int_{0}^{-\infty} t e^{-(a+j \omega) t} d t
$$

$$
\begin{aligned}
& =\int_{0}^{\infty} t e^{-(a+j \omega)} d t \\
& =t \int e^{-(a+\rho \omega) t} d t-\int \frac{(0) e^{-(a+j \omega) t}}{-(a+\rho \omega)} d t
\end{aligned}
$$

$$
=\left[t \frac{e^{-(a+\rho \omega) t}}{-(a+\rho \omega)}+\frac{e^{-(a-\rho \omega) t}}{-(a+\rho \omega)^{2}}\right]_{0}^{\infty}
$$

$$
F(\omega)=\frac{1}{(a+\rho \omega)^{2}}
$$

F-T propertion

1) linearity psoperty.

$$
\begin{aligned}
& \text { Ifax }(t)+(t) F^{T} a x(\omega)+b y(\omega) \\
& f(t)
\end{aligned}=a x(t)+b y(t) \quad \begin{aligned}
f(\omega) & =\int_{-\infty}^{\infty}[x(t)+b y(t)] e^{-j \omega t} d t \\
& =\left[a \int_{\infty}^{\infty} x(t) e^{-j \omega t}\right]+b \int_{-\infty}^{\infty} y(t) e^{-j \omega t} d L \\
& =a x(\omega)+b y(\omega)
\end{aligned}
$$

2) Tive slift property:

$$
\begin{aligned}
& x\left(z+z_{0}\right)=e^{-j a \omega_{0} t} d \partial x(j \omega) \\
& f\left(z-z_{0}\right)=\int_{-\infty}^{\infty} f\left(z-t_{0}\right) e^{-j n \omega_{0} t} d z
\end{aligned}
$$

put $t-z_{0}=p$

$$
\begin{aligned}
t & =p+t_{0} \\
f(p) & =\int_{-}^{\infty} f(p) e^{-j u \omega_{0}(p+20)} d t \\
& =\int_{-\infty}^{\infty} f(p) e^{-j n \omega_{0} p+e^{0} \omega_{i} \omega_{0} t} d t \\
& =F\left(\omega_{p}\right) e^{-j n \omega_{0} t}
\end{aligned}
$$

f_{q} sifting $F^{\prime}\left[x\left(\omega-\omega_{0}\right)\right]=x(t) e^{-1 \text { jj } \omega_{0} t}$

$$
\begin{aligned}
& f(1)=\frac{1}{2 T} \int_{-\infty}^{\infty} F(\omega) e^{j \omega t} d \omega \\
&\left.=\frac{1}{2 T}-\infty-\omega_{0}\right) e^{j \omega t} d \omega \\
& \omega-\omega_{0}=P \quad j(P) e^{j(P}
\end{aligned}
$$

Lime seversal

$$
\begin{aligned}
x(-z) & \stackrel{F}{-T} x(-\omega) \\
r(f(-z) & =\int_{-\infty}^{\infty} f(-z) e^{+i \omega t} d z \\
& =F(-\omega)
\end{aligned}
$$

$\frac{\text { Lime scaling }}{}$

$$
\begin{aligned}
F[x(a t)] & =\frac{1}{a} \times\left(\frac{\omega}{a}\right) \\
x(a t) & =\int_{-\infty}^{\infty} f(a t) \cdot e^{-j \omega t} d t \\
a t & =P \\
t=P / a & =\int_{-}^{\infty} f(p) e^{-j \omega(p / a)} d t \\
& =\int_{-\infty}^{\infty} f(p) \cdot e^{-\frac{1}{a}}[j \omega p] \\
& =\frac{1}{a} \times\left(\frac{\omega}{a}\right)
\end{aligned}
$$

Convolution

$$
\begin{aligned}
f(t)=h(t) * & \begin{aligned}
h(t) * k(t) & =\int_{-\infty}^{\infty} h(t) * x(t) e^{-j \omega t} d t \\
& =\int_{-\infty}^{\infty} h(t) e^{j \omega t} k(t) e^{j \omega t} d t \\
& =H(\omega) \times(\omega)
\end{aligned}
\end{aligned}
$$

$\cos \leftrightarrow$
\rightarrow Convolution:

$$
f(t)=x(t) * y(t) \stackrel{F T}{\longrightarrow} F(\omega)=x(\omega) \cdot y(\omega)
$$

A convolution operation is Arawstonmed to modulates, in frequency domain.

$$
\begin{aligned}
F(\omega) & =\int_{-\infty}^{\infty} f(t) e^{-j \omega t} d z \\
& =\int_{-\infty}^{\infty}[x(t) * y(z)] e^{-j \omega t} d z \\
& =\int_{-\infty}^{\infty}\left[\int_{-\infty}^{\infty} x(\tau) y(z-\tau) d \tau\right] e^{-j \omega t} d z \\
& =\int_{-\infty}^{\infty} x(\tau)\left[\int_{-\infty}^{\infty} y(t-\tau) e^{-j \omega t} d t\right] d t
\end{aligned}
$$

put $z-\tau=\alpha$, then $z=\tau+\infty$

$$
\begin{aligned}
& \text { ut } z-\tau=\alpha \text {, then } t z=d \alpha \\
& F(\omega)=\int_{-\infty}^{\infty} x(\tau)\left[\int_{-\infty}^{-} y(\alpha) e^{-j \omega(\tau+\alpha)} d \alpha \epsilon d \tau\right. \\
& F \int^{\infty}\left(y(\alpha) e^{-j \omega \tau} \cdot e^{-j \omega \alpha} d \alpha\right]
\end{aligned}
$$

$$
d t=d \alpha
$$

$$
\begin{aligned}
&=\int_{-\infty}^{\infty} x(\tau)\left[-\int_{-\infty}^{\infty} y(\alpha)\right. \\
&=\int_{-\infty}^{\infty} x(\tau)\left[\int_{-\infty}^{\infty} y(\alpha) e^{-j \omega \tau} \cdot e^{-j \omega \alpha} d \alpha\right] d \tau \\
&-i \omega \tau \sim \int_{-\infty}^{\infty} y(\infty) e^{-j \omega \alpha} d \alpha
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{-\infty}^{\infty} x(1) \\
& =\int_{-\infty}^{\infty} x(\tau) e^{-j \omega \tau} d \tau \int_{-\infty}^{\infty} y(\alpha) e^{-j \omega \alpha} d \alpha
\end{aligned}
$$

$$
F(w 1 .)^{-\infty} x(\omega) \cdot y(\omega)
$$

\rightarrow Frequency differentiation:
If $x(t) \stackrel{\text { F. } T}{\longrightarrow} x(\omega)$, then

$$
-i t x(t) \stackrel{F \cdot T}{\stackrel{d}{d \omega} x(\omega)}
$$

Differentiating the $f q$ spectrum is equivalent to multiplying the time domain signal by complex number -it:
proof:

$$
\begin{aligned}
& x(\omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t \\
& \begin{aligned}
\frac{d}{d \omega} x(\omega) & =\int_{-\infty}^{\infty} x(t) \frac{d}{d \omega}\left[e^{-j \omega t}\right] d t \\
& =\int_{-\infty}^{\infty} x(t)(-j t) e^{-j \omega t} d t \\
& =-j t \int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t \\
\frac{d}{d \omega} x(\omega) & =-j t x(\omega)
\end{aligned}
\end{aligned}
$$

\rightarrow Rime Differentiation:

$$
\begin{aligned}
& \text { If } x(t) \stackrel{F \cdot T}{T} \times(\omega) \text {, then } \\
& \frac{d}{d t} x(t) \stackrel{F \cdot T}{\longleftrightarrow} j \omega \times(\omega)
\end{aligned}
$$

Dit
Differentiation in time domain corresponds to cultirlying by jus is iq domain. It accentuates high frequency components of the sign proof:.

$$
\begin{aligned}
& x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} x(\omega) e^{j \omega t} d \omega \\
& \begin{aligned}
& \frac{d x(t)}{d t}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} x(\omega)\left[\frac{d}{d t} e^{j \omega t}\right] d \omega \\
&=\frac{1}{2 \pi} \int_{-\infty}^{\infty} x(\omega) j \omega e^{j \omega t} d \omega \\
&
\end{aligned}
\end{aligned}
$$

\rightarrow Parsevah Theorem or Rayleigh's The orem: If $x(t) \stackrel{F T}{\longleftrightarrow} x(\omega)$, then

$$
E=\int_{-\infty}^{\infty}|x(t)|^{2} d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|x(\omega)|^{2} d \omega=\int_{-\infty}^{\infty}|x(f)|
$$

Energy of the signal can be obtained by interchanging its energy spectrum Proof:

$$
E=\int_{-\infty}^{\infty}|x(t)|^{2} d t=\int_{-\infty}^{\infty} x(t) \cdot x^{*}(z) d t=0
$$

Inverse F:T stater that

$$
x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} x(\omega) e^{j \omega t} d \omega
$$

Taking conjugate of both sides

$$
x^{*}(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} x^{*}(\omega) e^{-j \omega t} d \omega+
$$

subifitute $x^{*}(t)$ in eq (1)

$$
\begin{aligned}
\text { sfitute } x^{*}(t) \text { in eq } \\
\begin{aligned}
& E=\int_{-\infty}^{\infty} k(t)\left[\frac{1}{2 \pi} \int_{-\infty}^{\infty} x^{*}(\omega) e^{-j \omega t}\right] d \omega \\
&=\frac{1}{2 \pi} \int_{-\infty}^{\infty} x^{*}(\omega) \int_{-\infty}^{\infty} x(t) e^{-j \omega t} d \omega \\
&=\frac{1}{2 \pi} \int_{-\infty}^{\infty} x^{*}(\omega) \cdot x(\omega) d \omega \\
& E\left.\left.=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \right\rvert\, x(\omega)\right)^{2} d \omega \\
& \omega=2 \pi f, d \omega=2 \pi d f \\
& E=\frac{1}{2 \pi} \int_{\infty}^{\infty}|x(\omega)|^{2} \not \approx d f=\int_{\infty}^{\infty}|x(\phi)|^{2} 0
\end{aligned}
\end{aligned}
$$

\rightarrow Introduction to Hilbert Cranform:
Hilbert transform of a signal $x(t)$ is defined as the transform in which share angle of all Compon--cents of the signal shifted by $\pm 90^{\circ}$.

Hilbert tramform of $x(z)$ is represented wish $\bar{x}(x)$, \& it is given by

$$
\begin{aligned}
& \text { is given by } \\
& \bar{x}(t)=\frac{1}{\pi} \int_{-}^{\infty} \frac{x(k)}{t-k} d k
\end{aligned}
$$

The inverse Hilbert transform is ginemby

$$
\hat{k}(t)=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{x(k)}{(t-k)} d k
$$

$x(t), \bar{x}(z)$ is called Hilbert trawsionm pair
Properties of hilbert Trans onm
A signal $x(t)$ and its Hilbert transforms $\bar{x}(t)$
have
i) The same amplitude spectrum
2) The some autocorrelation function
3) The energy spectral demit is same \& $\bar{x}(t)$
4) $x(t) \propto \bar{x}(t)$ are orthogonal
5) The Hibert transform of $\bar{x}(t)$ in $x(t)$
6) If fourier transforms exist then Hilbert transf alto exists for evergy α power signal.

Sampling Theorem:
A continous time signal cam be com.
pletely represented in its samples and recovered back if the sampling frequency is twice of the lighter frequency content of the signal. ic

$$
f_{s} \geqslant 2 w
$$

Where f_{s} is the sampling frequency
w is the higher $f q$ content.
\rightarrow roo of of sampling theorem are two parts: 1) Representation of $x(z)$ in terms of its samples
2) Reconstruction of $x(t)$ from its samples.
\rightarrow Reconstruction of signal from its sample step 1:. Take inverse. Fourier tramiforn of $x(t)$ which is in terms of $x_{\delta}(f)$.
2 . Show that $x(t)$ is obtained back with the help of interpolation function.

Step 1:
Relation between $x(f) \propto x_{\delta}(f)$
Let in assume $f_{s}=2 \omega$, then as per below

$$
\begin{align*}
x_{\delta}(f) & =f_{s} \times(f) \\
x(f) & =\frac{1}{f} \times \delta(f) \tag{1}
\end{align*}
$$

for $-w \leq f \leqslant w$

$$
f_{s}=2 \omega
$$

$$
\begin{align*}
& X(\omega)=\sum_{\text {www }}^{f \text { irstRanker.com }}=x(n) e \\
& x(f)=\sum_{n=-\infty}^{\infty} x(n) e^{-j z \pi f n} \tag{2}
\end{align*}
$$

In above equation ' f ' is the $f q$ of $D T$ signal. If we replace $x(f)$ by $x_{\delta}(f)$, then f becomes frequency of $C T$ signal.i.e,

$$
x_{\delta}(f)=\sum_{n=-\infty}^{\infty} k(n) e^{-j 2 \pi \frac{f}{F_{s}} n}
$$

In above equation f^{-}is frequency \& CT signal. And $\frac{f}{f_{s}}=f q$ of DT signal:

$$
\begin{align*}
& x(n)=x\left(n T_{s}\right) \\
& x_{\delta}(f)=\sum_{n=-\infty}^{\infty} x\left(n T_{s}\right) e^{-92 \pi f_{n} T_{s}} \tag{3}
\end{align*}
$$

$$
\frac{1}{f_{s}}=T_{s}
$$

substitute above equation in eq (1)

$$
x(f)=\frac{1}{f_{s}} \sum_{n=\infty}^{\infty} x\left(n T_{s}\right) e^{-j 2 \pi f_{n} T_{s}}
$$

Inverse Fourier Trawform of above equation giver $x(z)$ ie,

$$
\begin{aligned}
& i \text { on giver } x(z) \text { ie, } \\
& x(z)=\text { IF T }\left\{\frac{1}{f_{s}} \sum_{n=-\infty}^{\infty} x\left(n T_{s}\right) e^{\left.-j 2 \pi f_{n} T_{s}\right\}}\right. \\
& x(z)=\int_{-\infty}^{\infty}\left[\frac{1}{f_{s}} \sum_{n=-\infty}^{\infty} x\left(n T_{s}\right) e^{\left.-j 2 \pi f_{n} T s\right] e^{j i 2 f t} d f}\right.
\end{aligned}
$$

Here the integration can be taken from $-\omega \leq f \leq \omega$. Since $x(f)=\frac{1}{f_{s}} x_{\delta}(f)$ for -w $\omega f \leq$

$$
\begin{gathered}
\leq f \leq \omega \cdot \text { since } x(f)=\frac{1}{f_{s}} \delta(f) \\
\left.\therefore x(t)=\int_{-\omega}^{\omega} \frac{1}{f_{s}} \sum_{n=-\infty}^{\infty} x\left(n T_{s}\right) e^{-j 2 \pi f n T_{s}} \cdot e^{j 2 \pi f^{\prime}} d f \right\rvert\,
\end{gathered}
$$

FirstRakakgriconthe order of summation os Firstranker's choir σ www.FirstRanker.com www.FirstRanker.com integration.

$$
\begin{aligned}
& x(t)=\sum_{n=\infty}^{\infty} x\left(n T_{s}\right) \frac{1}{f_{s}} \int_{-\infty}^{\omega} e^{\rho 2 \pi f\left(t-n T_{s}\right)} d f \\
& =\sum_{n=-\infty}^{\infty} x\left(n T_{s}\right) \cdot \frac{1}{f_{s}} \cdot\left[\frac{e^{j 2 \pi f\left(t-n T_{s}\right)}}{j 2 \pi\left(t-n T_{s}\right)}\right]_{-\omega}^{\omega} \\
& =\sum_{n=-\infty}^{\infty} x\left(n T_{s}\right) \cdot \frac{1}{f_{s}}\left[\frac{e^{\left.j 2 \pi \omega\left(t-n T_{s}\right)-e^{-j 2 \pi \omega(1 / s)} n \pi s\right)}}{02 \pi\left(t-n T_{s}\right)}\right] \\
& =\sum_{n=-\infty}^{\infty} x\left(n T_{s}\right) \cdot \frac{1}{f_{s}} \frac{\sin 2 \pi \omega\left(t-n T_{s}\right)}{\pi\left(t-n T_{s}\right)} \\
& =\sum_{n=-\infty}^{\infty} x\left(n T_{s}\right) \frac{\sin \pi\left(2 \omega t-2 \omega_{n} T_{s}\right)}{\pi\left(f_{s} t-f_{s} n T_{s}\right)}
\end{aligned}
$$

Here $f_{s}=2 \omega$, hence $T_{s}=\frac{1}{f_{s}}=\frac{1}{2 \omega}$
simplifying above equation,

$$
\begin{array}{r}
x(t)=\sum_{n=-\infty}^{\infty} x\left(n T_{s}\right) \frac{\sin \pi(2 \omega t-n)}{\pi(2 \omega t-n)} \\
x(t)=\sum_{n=-\infty}^{\infty} x\left(n T_{s}\right) \sin c(2 \omega t-n) \\
\\
\quad \frac{\sin \pi \theta}{\pi \theta}=\operatorname{sinc} \theta
\end{array}
$$

step 2: Let us interpret the above equation.
Expounding we get,

$$
\begin{aligned}
& \text { Expounding we get, } \\
& x(t)=\cdots+x\left(-2 T_{s}\right) \sin c(2 \omega t+2)+x\left(-T_{s}\right) \\
& \sin c(2 \omega t+1)+x(0) \sin (2 \omega t)+x\left(T_{s}\right) \\
& \sin (2 \omega t-1)+
\end{aligned}
$$

Firstrymet scifote and analytical pro of for Bond Bw.Firstignker.com limited signal:

1) A band limited signal of finite energy, which has no fq_{q} components higher than w Hertz, is completely described by specify. -ing the values of the signal at instants of tine seperated by $\frac{1}{2 \omega}$ seconds and 2) A band limited signal of finite energy. which has no frequency components higher than Wtertr, may be completely recovered from the knowledge of its samples taken at the rate of nw samples per second

The first part of above statement tells about sampling of the signal and $2^{n d}$ pant tells about reconstruction of the signal. Above statement cam be combined stated alternately as follows.
see the fist page.
part I: Representation of $k(t)$ in its sample $x\left(n T_{s}\right)$
Step 1 : Define $k_{\delta}(t)$
2: Fourier transform of $x_{\delta}(t)$ i.e $x_{\delta}(f)$
3 : Relation between $x(f) \& x_{\delta}(f)$
4. Relation between $x(t) \propto x\left(n T_{s}\right)$
step 1: Define $x \delta(t)$
Step 2: Fourier trawntorm of $x_{\delta}(t)$ ie $x_{\delta}(f)$.

- FirstRankerncDetlueen $x(f)$ \& $x_{\delta}(f)$

step', Define $k_{\delta}(t)$
The sampled signal $x_{\delta}(t)$ in given an

$$
\begin{equation*}
x_{\delta}(z)=\sum_{n=-\infty}^{\infty} x(t) \delta\left(z-n T_{s}\right) \tag{1}
\end{equation*}
$$

Here observe that $x \delta(t)$ is the prods of $x \delta$ and impulse train $\delta(z)$ as shown in $\operatorname{fig}(a)$

$f i g(a)$
$\delta(t-n T s)$ indicates the
In equation (1), $\delta(t-n T s)$ indicates and samples placed at $\pm T_{S}, \pm 2 T_{S}, \pm 3 T_{S}$ and so on.
step 2: FT of $x_{\delta}(t)$ ie $\times \delta(f)$
Taking $F \cdot T$ of eq (1)

$$
\begin{aligned}
& \text { King } F=T \text { or } \\
& x \delta(f)=F T\left\{\sum_{n=-\infty}^{\infty} x(t) \delta\left(A-n T_{s}\right)\right\} \\
&=F T\{\text { product \&f } x(t) \text { simpuh } \\
&\text { train }\}
\end{aligned}
$$ domain becomes convolution in ${ }^{\text {www.FirstRanker.com }}$, domain ie,

$$
x_{\delta}(f)=F \cdot T\left\{x(z) * F T\left\{\delta\left(t-n T_{s}\right)\right\}\right.
$$

By definitions, $x(t) \stackrel{F-T}{\xrightarrow[T]{T}} x(f)$ Q

$$
\delta\left(z-n T_{s}\right) \stackrel{F}{\longrightarrow} f_{s} \sum_{n=-\infty}^{\infty} \delta\left(f-n f_{s}\right)
$$

\because eq (2) becomes

$$
x_{\delta}(f)=x(f) * f_{s} \sum_{n=-\infty}^{\infty} \delta_{\left(f-i f_{s}\right)}
$$

\because convolution is linear,

$$
\begin{aligned}
x \delta(f)= & f_{s} \sum_{n=-\infty}^{\infty} x(f) * \delta\left(f-n f_{s}\right) \\
= & f_{s} \sum_{n-\infty}^{\infty} \times\left(f-n f_{s}\right) \\
= & \cdot, f_{s} \times\left(f-2 f_{s}\right)+f_{s} \times\left(f-f_{s}\right)+ \\
& f_{s} \times(f)+f_{s} \times\left(f-f_{s}\right)+f_{s}\left(f-f_{s},\right.
\end{aligned}
$$

\rightarrow Sampling techniques:
Here, We have different types of sampling the signal.
Ideal sampling (or) Instantaneous sampling (or) Impute sampling:

Ideal sampling is same or infant-- aneous sampling. In fig(1) shows the

FirstBlankeercophan
firstankers

fig (b)
If closing time ' t ' of the switch approaches zero the output $x_{\delta}(t)$ gives only instantaneous value. The waveform shown in $\mathrm{Fig}(b)$. Since the width of the pule approaches zero, the instantaneous sampling gives train of impulses in $\times \delta(t)$. The area I each impute in the sampled version is equal to instantaneous value \& inst signal $x(t)$.

We know that the train of imputsercan be represented mathematically a,

$$
\begin{equation*}
s_{\delta}(t)=\sum_{n=-\infty}^{\infty} \delta\left(t-n T_{s}\right) \tag{i}
\end{equation*}
$$

This in called sampling function and its waveform is shown in fig (a). The sampled signal $x_{\delta}(t)$ is given by multiplication of $x(d)$ and $s \delta(t)$.

$$
\begin{align*}
&(d) \text { and } s \delta(t) \\
& \because x \delta(t)=x(t) s_{\delta}(t)=x(t) \sum_{n=-\infty}^{\infty} \delta\left(z-n T_{s}\right) \tag{2}\\
&=\sum_{n=-\infty}^{\infty} x\left(n T_{s}\right) \delta\left(t-n T_{s}\right)-(2)
\end{align*}
$$

Firsthanker.com
the ideally sampled
www.FirstRanker.com www.FirstRanker.cognal given by above eq cam be written a
spectrum of ideally sampled signal

$$
\therefore x_{\delta}(f)=f_{s} \sum_{n=-\infty}^{\infty} x\left(f-n f_{s}\right)
$$

\rightarrow Natural sampling (or) chopper sampling
In intantancous sampling, we have seen that the sampler whose width r approd zero. Because of this impracticable method the power in the instant aneourly sampled pubs is negligible hence it is not suitable for tramnixion. Therefore the possible methods like natural sampling os flat top souping are ured.

In natural sampling, the pale has a Finite width τ. The waveform of the sampled signal appears to be chopped off from the original signal waveform.

Let us comider an analog coubinows time signal $x(t)$ to be sampled at the rate of $f_{S} H_{z}$ and f_{S} is the higher than Ngquist sate such that sampling theorem in Satisted. A sampled signal $s(t)$ is obtained by runt -plication of the sampling function a signal

EirstiRankefralph ct) es a train of periodic Firstranker's.choice pubes of cuidthwnw. Firstifinkef.com que ne ww. FirstRanker.com fo Hz .

fig 1

$f \circ g(2)$
Fig (i) shows a functional diagram of natural sampler. When $c(t)$ goes high; a switch 's' is closed. Therefore, $s(t)=x(t) \quad$ when $(t)=A$ camplitude of $c(t)$) $s(t)=0 \quad$ when $c(t)=0$
signal $s(t)$ can ado be defined mathe-- matically as $s(t)=c(t) \times(t)$

Here $c(t)$ is the periodic train of pules of width $\tau \propto r_{q} f_{s}$.

Exponential F.S for periodic waveform b given as

$$
\begin{equation*}
x(t)=\sum_{n=-\infty}^{\infty} c_{n} e^{j 2 \pi n t / T_{0}} \tag{2}
\end{equation*}
$$

For the periodic pulse train of $c(t)$ we have, $T_{0}=T_{s} \frac{1}{\text { wnw her Firstanker.com }}$
or (2) will be [with $x(t)=c(t)$]

$$
c(t)=\sum_{n=-\infty}^{\infty} c_{n} e^{92 \pi f_{s} n t}
$$

putting $\frac{1}{T_{0}}=f_{5}$
$c(t)$ in a rectangular pule train. e_{n} for this waveforms of given as

$$
c_{n}=\frac{T_{A}}{T_{0}} \sin c\left(T_{n} T\right)
$$

Here $T^{\prime}=$ puli width $=\tau$

$$
\begin{align*}
f_{n} & =\text { Harmonic } f q \\
f_{n} & =n r_{s} \text { or }, f_{n}=\frac{n}{T_{0}}=n f_{0} \\
\therefore c_{n} & =\frac{r A}{T_{s}} \operatorname{sinc}\left(f_{n} \tau\right) \tag{4}
\end{align*}
$$

substitute' c_{n} value in eq (3)

$$
c(t)=\sum_{n=-\infty}^{\infty} \frac{r A}{T_{s}} \operatorname{sinc}\left(f_{n} \tau\right) e^{j 2 \pi f_{s} n t}
$$

on putting the value if $a(z)$ in

$$
\begin{aligned}
& s(t)=c(t) \times(t) \\
& s(t)=\frac{\tau A}{T_{s}} \sum_{n=-\infty}^{\infty} \sin c\left(f_{n} r\right) e^{j 2 \pi f_{s} r t} \cdot x(t) \\
& \text { naturally sample }
\end{aligned}
$$

This equation represents naturally sampled signal.

$$
F \cdot T \text { of } s(t)
$$

fe shifting property of $F \cdot T$, that

$$
\begin{aligned}
& e^{\rho 2 \pi f_{s n z}} \times(z) \longleftrightarrow x\left(f-f_{s} n\right) \\
& s(f)=\frac{\tau A}{T_{s}} \sum_{n=-\infty}^{\infty} \sin \left(\left(f_{n} \tau\right)\right. \\
& \times\left(f-f_{s} n\right)
\end{aligned}
$$

we know that $S_{n}=n f_{s}$
spectrum of naturally sampled signal

$$
s(F)=\frac{\gamma A}{T s} \sum_{n=-\infty}^{\infty} \sin c\left(n f_{s}^{T}\right) \times\left(f-n_{n}^{2}\right.
$$

\rightarrow Flat to p sampling (er) Rectangular pulse sampling:

Natural sampling is little complex, but it is very easy to get flat top sample. The top of the samples semiains conrad and equal to instantaneous value of bare bound signal $x(t)$ at the start of the sampling. The duration of each sample is \mathcal{I} and sampling rate is equal to $f_{S}=\frac{1}{\tau_{s}}$.

FirstRanker.com
Firsuankfiesogtaides the womble and hold circuit.: used for generating fl to P www. FirstRanker.com waveform shown in fig (2)

The switch s, closes at each sampling instant to sample the modulating signal. The capacitor ' c ' holds the sampled voltage for period τ at the end of whichitch s_{e} is closed in order to dixharge the capacitor.

Thur the signal generated ar a result of sample a hold process is the flat top sampled signal. The spectrum of the gere. -rated flat top sampling signal along with the modulating signal and the sampling signal is shown below fog (2) x li

\Leftrightarrow flat top sampling

FISStRanker.com
Firfritubtr'sthope sampling in mostly wed in digital tram].

Flat top sampling ${ }^{(1+}$ (an be mathematically considered as convolution of the sampled signal and pulse signal $h(E)$.

$$
\begin{align*}
\because & s(t)=x_{\delta}(t) * h(z) \tag{1}\\
& x(t) * \delta(t)=x(t) \tag{2}
\end{align*}
$$

Convolution of $x \delta(t) \propto h(z)$, we get a pulse whose duration is equal to $h(t)$ only but amplitude is defined by $x \delta(t)$.
$x \delta(t)$ is given as

$$
\begin{equation*}
x \delta(t)=\sum_{n=-\infty}^{\infty} x\left(n T_{s}\right) \quad \delta\left(z-n T_{s}\right) \tag{3}
\end{equation*}
$$

From eq (1)

$$
\begin{align*}
s(t) & =x \delta(t) * h(t) \\
& =\int_{-\infty}^{\infty} x \delta(u) h(t-u) d u \\
& =\int_{-\infty}^{\infty} \sum_{n=-\infty}^{\infty} x\left(n T_{s}\right) \delta\left(u-n T_{s}\right) h(t-u) d u \\
& \text { from eq (3) } \\
& \left.\sum_{n=-\infty}^{\infty} x\left(n T_{s}\right) \int_{-\infty}^{\infty} \delta\left(u-n T_{s}\right) h(t-u) d u-\right\} \tag{2}
\end{align*}
$$

From the shifting property of delta function we know that,

$$
\begin{equation*}
\int_{-\infty}^{\infty} f(z) \delta\left(t-t_{0}\right)=f\left(t_{0}\right) \tag{5}
\end{equation*}
$$

FirstRanker.fom
 www.FirstRănkeg.Com

$$
\begin{align*}
& a s(t)=\sum_{n=\infty}^{\infty} x\left(n T_{s}\right) h\left(t-n \tau_{s}\right) \tag{6}\\
& s(t)=x_{s}(t) * h(t)
\end{align*}
$$

By taking $F . T$ of both sides

$$
s(f)=x_{\delta}(f) H(f)
$$

convolution in time domain is connetret to multiplication in $f q$ domain.

$$
\begin{equation*}
x_{\delta}(f)=f_{s} \sum_{n=-\infty}^{\alpha} x\left(f-n f_{s}\right) \tag{-8}
\end{equation*}
$$

eq .(2) become
spectrum of flat top sampled signal

$$
s(f)=f_{S} \sum_{n=-\infty}^{\infty} x\left(f-n f_{s}\right)+(f)
$$

\rightarrow Effects of under sampling (Alioning):
When comidering the recontanction of a signal. you should already be familiar with the idea of nyquist rate. Thin concent allows us to find the sampling rate that will provide for perfect reconstruction of our signal. If we sample at too low of a rate (below the Nyquist rate), then problem will arise that will make

FirstRankeranmateon impossince. The problem is Renown as alluww.EirstRanker.com www.FirstRanker.com

Aliasing occurs when there is an overlap in the shitted, periodic copies of our original siguah F.T.ie, spectrum.

In f_{q} domain, that part b o the signal will overlap with the periodic signals. next to it. In this overlap the values of the $f q$ will be added. together and the shape of the signals spectrum all be unwantingly allered. This overlapping, or alianing, maker it impossible to core. -ctly, determine the correct strength of that $f \varepsilon$.

Aliasing: When the high $f \varepsilon$ interferes with low $f_{\varepsilon} x$ appears as low f_{ε}, then the phenomenon is called alioning.

FirstRanker.dcomg
Firstander's choice
www.FirstRanker.com
i) Since high a low if
other, distortion is generated
2) The data is tod and it cannot be secern. *.afferent way to avoid dosing
Attorning can be avoided by two method,

1) Sampling rale $f_{S} \geqslant 2 \omega$
2) strictly band hemin the signal, to w.
3) Sampling rate is $\geqslant 2 L$

When the sampling rale is mode higher than 2ω, then the spectrum will not onelop \& there will be sufficient gap blu the individual spect-sumn,

2) Bandhaviting the signal:

The sampling rate is $f_{5}=2 w$. The ideally speaking there should be no aliaing. But there can be few components higher than 2 21. There components create alianing. Hence a LPF is wed before sampling the Seguah. Thun the op of Band haritcel 2 PF

EirstpRankerleghar than LS. Then there is

\rightarrow Nyquist Rate os Nyquist Juterval
Nyquist Rate:
When the sampling rate becomes exactly equal to 2 h samples/ sec, for a given bandwidth of $W \mathrm{~Hz}$, then it is called Nyquint rate.

$$
\text { Nyquist rate }=2 \omega \mathrm{HZ} \text {. }
$$

Nyquil interval: It is the time interval between any two adjacent samples aten sampling rale is Nyqistrate.

$$
\text { Ny quirt Interval }=\frac{1}{2 L W} \text { seconds. }
$$

UNIT - IV

SIGNAL TRANSMISSION THROUGH LINEAR SYSTEMS

UNIT - IV

SIGNAL TRANSMISSION THROUGH LINEAR SYSTEMS

Linear Svstems:

A system is said to be linear when it satisfies superposition and homogenate principles. Consider two systems with inputs as $\mathrm{x}_{1}(\mathrm{t}), \mathrm{x}_{2}(\mathrm{t})$, and outputs as $\mathrm{y}_{1}(\mathrm{t}), \mathrm{y}_{2}(\mathrm{t})$ respectively. Then, according to the superposition and homogenate principles,

$$
\begin{aligned}
& \mathrm{T}\left[\mathrm{a}_{1} \mathrm{x}_{1}(\mathrm{t})+\mathrm{a}_{2} \mathrm{x}_{2}(\mathrm{t})\right]=\mathrm{a}_{1} \mathrm{~T}\left[\mathrm{x}_{1}(\mathrm{t})\right]+\mathrm{a}_{2} \mathrm{~T}\left[\mathrm{x}_{2}(\mathrm{t})\right] \\
\therefore & \mathrm{T}\left[\mathrm{a}_{1} \mathrm{x}_{1}(\mathrm{t})+\mathrm{a}_{2} \mathrm{x}_{2}(\mathrm{t})\right]=\mathrm{a}_{1} \mathrm{y}_{1}(\mathrm{t})+\mathrm{a}_{2} \mathrm{y}_{2}(\mathrm{t})
\end{aligned}
$$

From the above expression, is clear that response of overall system is equal to response of individual system.

Example:

$$
\mathrm{y}(\mathrm{t})=2 \mathrm{x}(\mathrm{t})
$$

Solution:

$$
\begin{aligned}
& \mathrm{y}_{1}(\mathrm{t})=\mathrm{T}\left[\mathrm{x}_{1}(\mathrm{t})\right]=2 \mathrm{x}_{1}(\mathrm{t}) \\
& \mathrm{y}_{2}(\mathrm{t})=\mathrm{T}\left[\mathrm{x}_{2}(\mathrm{t})\right]=2 \mathrm{x}_{2}(\mathrm{t}) \\
& \left.\mathrm{T}\left[\mathrm{a}_{1} \mathrm{x}_{1}(\mathrm{t})+\mathrm{a}_{2} \mathrm{x}_{2}(\mathrm{t})\right]=2 \mathrm{a}_{1} \mathrm{x}_{1}(\mathrm{t})+\mathrm{a}_{2} \mathrm{x}_{2}(\mathrm{t})\right]
\end{aligned}
$$

Which is equal to $a_{1} y_{1}(t)+a_{2} y_{2}(t)$. Hence the system is said to be linear.

Impulse Response:

The impulse response of a system is its response to the input $\delta(\mathrm{t})$ when the system is initially at rest. The impulse response is usually denoted $h(t)$. In other words, if the input to an initially at rest system is $\delta(\mathrm{t})$ then the output is named $\mathrm{h}(\mathrm{t})$.

Liner Time variant (LTV) and Liner Time Invariant (LTI) Systems

If a system is both liner and time variant, then it is called liner time variant (LTV) system.
If a system is both liner and time Invariant then that system is called liner time invariant (LTI) system.

Response of a continuous-time LTI system and the convolution integral

(i) Impulse Response:

The impulse response $\mathrm{h}(\mathrm{t})$ of a continuous-time LTI system (represented by \mathbf{T}) is defined to be the response of the system when the input is $\delta(\mathrm{t})$, that is,

$$
\begin{equation*}
\mathbf{h}(\mathbf{t})=\mathbf{T}\{\boldsymbol{\delta}(\mathbf{t})\} \tag{1}
\end{equation*}
$$

(ii) Response to an Arbitrary Input:

The input $\boldsymbol{x}(\mathrm{t})$ can be expressed as

$$
\begin{equation*}
x(t)=\int_{-\infty}^{\infty} x(\tau) \delta(t-\tau) d \tau \tag{2}
\end{equation*}
$$

Since the system is linear, the response $\boldsymbol{y}(\mathrm{t}$ of the system to an arbitrary input $\mathrm{x}(\mathrm{t})$ can be expressed as

$$
\begin{align*}
y(t) & =\mathbf{T}\{x(t)\}=\mathbf{T}\left\{\int_{-\infty}^{\infty} x(\tau) \delta(t-\tau) d \tau\right\} \\
& =\int_{-\infty}^{\infty} x(\tau) \mathbf{T}\{\delta(t-\tau)\} d \tau \tag{3}
\end{align*}
$$

Since the system is time-invariant, we have

$$
\begin{equation*}
h(t-\tau)=\mathbf{T}\{\delta(t-\tau)\} \tag{4}
\end{equation*}
$$

Substituting Eq. (4) into Eq. (3), we obtain

$$
\begin{equation*}
y(t)=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau \tag{5}
\end{equation*}
$$

Equation (5) indicates that a continuous-time LTI system is completely characterized by its impulse response $h(t)$.
(iii) Convolution Integral:

Equation (5) defines the convolution of two continuous-time signals $\mathrm{x}(\mathrm{t})$ and $\mathrm{h}(\mathrm{t})$ denoted by

$$
\begin{equation*}
y(t)=x(t) * h(t)=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau \tag{6}
\end{equation*}
$$

Equation (6) is commonly called the convolution integral. Thus, we have the fundamental result that the output of any continuous-time LTI system is the convolution of the input $\mathrm{x}(\mathrm{t}$) with the impulse response $h(t)$ of the system. The following figure illustrates the definition of the impulse response $h(t)$ and the relationship of Eq. (6).

Fig. : Continuous-time LTl system.

(iv) Properties of the Convolution Integral:

The convolution integral has the following properties.

1. Commutative:

$$
x(t) * h(t)=h(t) * x(t)
$$

2. Associative:

$$
\left\{x(t) * h_{1}(t)\right\} * h_{2}(t)=x(t) *\left\{h_{1}(t) * h_{2}(t)\right\}
$$

3. Distributive:

$$
\left.x(t) *\left\{h_{1}(t)\right\}+h_{2}(t)\right\}=x(t) * h_{1}(t)+x(t) * h_{2}(t)
$$

(v) Step Response:

The step response $s(t)$ of a continuous-time LTI system (represented by \mathbf{T}) is defined to be the response of the system when the input is $u(t)$; that is,

$$
\mathbf{S}(\mathbf{t})=\mathbf{T}\{\mathbf{u}(\mathbf{t})\}
$$

In many applications, the step response $s(t)$ is also a useful characterization of the system. The step response $\mathrm{s}(\mathrm{t})$ can be easily determined by,

$$
s(t)=h(t) * u(t)=\int_{-\infty}^{\infty} h(\tau) u(t-\tau) d \tau=\int_{-\infty}^{t} h(\tau) d \tau
$$

Thus, the step response $s(t)$ can be obtained by integrating the impulse response $h(t)$.
Differentiating the above equation with respect to t, we get

$$
h(t)=s^{\prime}(t)=\frac{d s(t)}{d t}
$$

Thus, the impulse response $h(t)$ can be determined by differentiating the step response $s(t)$.

Distortion less transmission through a system:

Transmission is said to be distortion-less if the input and output have identical wave shapes. i.e., in distortion-less transmission, the input $\mathrm{x}(\mathrm{t})$ and output $\mathrm{y}(\mathrm{t})$ satisfy the condition:

$$
y(t)=K x\left(t-t_{d}\right)
$$

Where $\mathrm{t}_{\mathrm{d}}=$ delay time and

$$
\mathrm{k}=\text { constant. }
$$

Take Fourier transform on both sides

$$
\begin{aligned}
\mathrm{FT}[\mathrm{y}(\mathrm{t})] & =\mathrm{FT}\left[\mathrm{Kx}\left(\mathrm{t}-\mathrm{t}_{\mathrm{d})}\right)\right] \\
& =\mathrm{K} \operatorname{FT}\left[\mathrm{x}\left(\mathrm{t}-\mathrm{t}_{\mathrm{d}}\right)\right]
\end{aligned}
$$

According to time shifting property,

$$
Y(w)=K X(w) e^{-j \omega t_{d}}
$$

Thus, distortion less transmission of a signal $x(t)$ through a system with impulse response $h(t)$ is achieved when
$|\mathbf{H}(\omega)|=\mathbf{K}$ and (amplitude response)

$$
\Phi(\omega)=-\omega t_{d}=-2 \pi f t_{d} \quad \text { phaseresponse }
$$

Amplitude response

Phase response

A physical transmission system may have amplitude and phase responses as shown below:

FILTERING

One of the most basic operations in any signal processing system is filtering. Filtering is the process by which the relative amplitudes of the frequency components in a signal are changed or perhaps some frequency components are suppressed. As we saw in the preceding section, for continuous-time LTI systems, the spectrum of the output is that of the input multiplied by the frequency response of the system. Therefore, an LTI system acts as a filter on the input signal. Here the word "filter" is used to denote a system that exhibits some sort of frequency-selective behavior.

A. Ideal Frequency-Selective Filters:

An ideal frequency-selective filter is one that exactly passes signals at one set of frequencies and completely rejects the rest. The band of frequencies passed by the filter is referred to as the pass band, and the band of frequencies rejected by the filter is called the stop band.

The most common types of ideal frequency-selective filters are the following.

1. Ideal Low-Pass Filter:

An ideal low-pass filter (LPF) is specified by

$$
|H(\omega)|= \begin{cases}1 & |\omega|<\omega_{c} \\ 0 & |\omega|>\omega_{c}\end{cases}
$$

The frequency $\boldsymbol{w} \boldsymbol{c}$ is called the cutoff frequency.

2. Ideal High-Pass Filter:

An ideal high-pass filter (HPF) is specified by

$$
|H(\omega)|= \begin{cases}0 & |\omega|<\omega_{c} \\ 1 & |\omega|>\omega_{c}\end{cases}
$$

3. Ideal Bandpass Filter:

An ideal bandpass filter (BPF) is specified by

$$
|H(\omega)|= \begin{cases}1 & \omega_{1}<|\omega|<\omega_{2} \\ 0 & \text { otherwise }\end{cases}
$$

4. Ideal Bandstop Filter:

An ideal bandstop filter (BSF) is specified by

$$
|H(\omega)|= \begin{cases}0 & \omega_{1}<|\omega|<\omega_{2} \\ 1 & \text { otherwise }\end{cases}
$$

The following figures shows the magnitude responses of ideal filters

Fig: Magnitude responses of ideal filters (a) Ideal Low-Pass Filter (b)Ideal High-Pass Filter
© Ideal Bandpass Filter (d) Ideal Bandstop Filter

UNIT - V LAPLACE TRANSFORMS

UNIT - V

LAPLACE TRANSFORMS

THE LAPLACE TRANSFORM:

we know that for a continuous-time LTI system with impulse response $h(t)$, the output $y(t)$ of the system to the complex exponential input of the form $e^{s t}$ is

$$
\begin{aligned}
& y(t)=\boldsymbol{T}\left\{e^{s t}\right\}=H(s) e^{s t} \\
& H(s)=\int_{-\infty}^{\infty} h(t) e^{-s t} d t
\end{aligned}
$$

A. Definition:

The function $\mathrm{H}(\mathrm{s})$ is referred to as the Laplace transform of $\mathrm{h}(\mathrm{t})$. For a general continuous-time signal $\mathrm{x}(\mathrm{t})$, the Laplace transform $\mathrm{X}(\mathrm{s})$ is defined as

$$
X(s)=\int_{-\infty}^{\infty} x(t) e^{-s t} d t
$$

The variable s is generally complex-valued and isexpressed as

$$
s=\sigma+j \omega
$$

Relation between Laplace and Fourier transforms:

Laplace transform of $\mathrm{x}(\mathrm{t})$

$$
X(S)=\int_{-\infty}^{\infty} x(t) e^{-s t} d t
$$

Substitute $s=\sigma+j \omega$ in above equation.

$$
\begin{aligned}
\rightarrow X(\sigma+j \omega) & =\int_{-\infty}^{\infty} x(t) e^{-(\sigma+j \omega) t} d t \\
& =\int_{-\infty}^{\infty}\left[x(t) e^{-\sigma t}\right] e^{-j \omega t} d t
\end{aligned}
$$

$$
\begin{gathered}
\therefore X(S)=F . T\left[x(t) e^{-\sigma t}\right] \\
X(S)=X(\omega) \quad \text { for } s=j \omega
\end{gathered}
$$

Inverse Laplace Transform:

We know that

$$
\begin{gathered}
X(S)=F \cdot T\left[x(t) e^{-\sigma t}\right] \\
\rightarrow x(t) e^{-\sigma t}=F \cdot T^{-1}[X(S)]=F \cdot T^{-1}[X(\sigma+j \omega)] \\
=\frac{1}{2} \pi \int_{-\infty}^{\infty} X(\sigma+j \omega) e^{j \omega t} d \omega \\
x(t)=e^{\sigma t} \frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\sigma+j \omega) e^{j \omega t} d \omega \\
=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\sigma+j \omega) e^{(\sigma+j \omega) t} d \omega \\
\text { Here, } \sigma+j \omega=s \\
j d \omega=d s \rightarrow d \omega=d s / j \\
\therefore x(t)=\frac{1}{2 \pi i} \int_{-\infty}^{\infty} X(s) e^{s t} d s \ldots
\end{gathered}
$$

Conditions for Existence of Laplace Transform:

Dirichlet's conditions are used to define the existence of Laplace transform. i.e.

- The function f has finite number of maxima and minima.
- There must be finite number of discontinuities in the signal f , in the given interval of time.
- It must be absolutely integrable in the given interval of time. i.e.

$$
\int_{-\infty}^{\infty}|f(t)| d t<\infty
$$

Initial and Final Value Theorems

If the Laplace transform of an unknown function $\mathrm{x}(\mathrm{t})$ is known, then it is possible to determine the initial and the final values of that unknown signal i.e. $\mathrm{x}(\mathrm{t})$ at $\mathrm{t}=0^{+}$and $\mathrm{t}=\infty$.

Initial Value Theorem

Statement: If $x(t)$ and its 1st derivative is Laplace transformable, then the initial value of $x(t)$ is given by

$$
x\left(0^{+}\right)=\lim _{s \rightarrow \infty} S X(S)
$$

Final Value Theorem

Statement: If $x(t)$ and its 1st derivative is Laplace transformable, then the final value of $x(t)$ is given by

$$
x(\infty)=\lim _{\varepsilon \rightarrow \infty} S X(S)
$$

Properties of Laplace transform:

The properties of Laplace transform are:

Linearity Property

$$
\begin{aligned}
& \text { If } x(t) \stackrel{\text { L.T }}{\longleftrightarrow} X(s) \\
& \& y(t) \stackrel{\text { L.T }}{\longleftrightarrow} Y(s)
\end{aligned}
$$

Then linearity property states that

$$
a x(t)+b y(t) \stackrel{\text { L.T }}{\longleftrightarrow} a X(s)+b Y(s)
$$

Time Shifting Property

$$
\text { If } x(t) \stackrel{\text { L.T }}{\longleftrightarrow} X(s)
$$

Then time shifting property states that

$$
x\left(t-t_{0}\right) \stackrel{\text { L.T }}{\longleftrightarrow} e^{-s t_{0}} X(s)
$$

Frequency Shifting Property

$$
\text { If } x(t) \stackrel{\text { L.T }}{\longleftrightarrow} X(s)
$$

Then frequency shifting property states that

$$
e^{s_{0} t} \cdot x(t) \stackrel{\mathrm{L.T}}{\longleftrightarrow} X\left(s-s_{0}\right)
$$

Time Reversal Property

$$
\text { If } x(t) \stackrel{\text { L.T }}{\longleftrightarrow} X(s)
$$

Then time reversal property states that

$$
x(-t) \stackrel{\text { L.T }}{\longleftrightarrow} X(-s)
$$

Time Scaling Property
If $x(t) \stackrel{\text { L.T }}{\longleftrightarrow} X(s)$
Then time scaling property states that

$$
x(a t) \stackrel{\text { L.T }}{\longleftrightarrow} \frac{1}{|a|} X\left(\frac{s}{a}\right)
$$

Differentiation and Integration Properties
If $x(t) \stackrel{\text { L.T }}{\longleftrightarrow} X(s)$
Then differentiation property states that

$$
\begin{aligned}
& \frac{d x(t)}{d t} \stackrel{\mathrm{~L} \cdot \mathrm{~T}}{\longleftrightarrow} s \cdot X(s) \\
& \frac{d^{n} x(t)}{d t^{n}} \stackrel{\mathrm{~L} \cdot \mathrm{~T}}{\longleftrightarrow}(s)^{n} \cdot X(s)
\end{aligned}
$$

The integration property states that

$$
\begin{aligned}
& \int x(t) d t \stackrel{\mathrm{L.T}}{\longleftrightarrow} \frac{1}{s} X(s) \\
& \iiint \ldots \int x(t) d t \stackrel{\text { L.T }}{\longleftrightarrow} \frac{1}{s^{n}} X(s)
\end{aligned}
$$

Multiplication and Convolution Properties

$$
\begin{aligned}
& \text { If } x(t) \stackrel{\text { L.T }}{\longleftrightarrow} X(s) \\
& \text { and } y(t) \stackrel{\text { L.T }}{\longleftrightarrow} Y(s)
\end{aligned}
$$

Then multiplication property states that

$$
x(t) \cdot y(t) \stackrel{\text { L.T }}{\longleftrightarrow} \frac{1}{2 \pi j} X(s) * Y(s)
$$

The convolution property states that

$$
x(t) * y(t) \stackrel{\text { L.T }}{\longleftrightarrow} X(s) \cdot Y(s)
$$

Region of convergence.

The range variation of ζ for which the Laplace transform converges is called region of convergence.

Properties of ROC of Laplace Transform

- ROC contains striplines parallel to $\mathrm{j} \omega$ axis in s-plane.

- If $x(t)$ is absolutely integral and it is of finite duration, then ROC is entire s-plane.
- If $x(t)$ is a right sided sequence then $\operatorname{ROC}: \operatorname{Re}\{\mathrm{s}\}>\zeta_{\mathrm{o}}$.
- If $x(t)$ is a left sided sequence then $\operatorname{ROC}: \operatorname{Re}\{s\}<\zeta_{0}$.
- If $x(t)$ is a two sided sequence then ROC is the combination of two regions.

ROC can be explained by making use of examples given below:
Example 1: Find the Laplace transform and ROC of $x(t)=e^{-}$at $u(t) x(t)=e^{-a t} u(t)$

$$
L . T[x(t)]=L . T\left[e-{ }^{a t} u(t)\right]=\frac{1}{S+a}
$$

$R e>-a$
$R O C: R e s \gg-a$

Example 2: Find the Laplace transform and ROC of $x(t)=e$ at $u(-t) x(t)=e^{\text {at }} \mathbf{u}(-t)$

$$
\begin{aligned}
& L . T[x(t)]=L . T\left[e^{a t} u(t)\right]=\frac{1}{S-a} \\
& \text { Res }<a \\
& \text { ROC }: \text { Res }<a
\end{aligned}
$$

Example 3: Find the Laplace transform and ROC of $x(t)=e-$ at $u(t)+e$ at $u(-t)$
$\mathbf{x}(\mathbf{t})=\mathbf{e}^{-\mathrm{at}} \mathbf{u}(\mathbf{t})+\mathbf{e}^{\mathrm{at}} \mathbf{u}(-\mathbf{t})$
$L . T[x(t)]=L . T\left[e^{-a t} u(t)+e^{a t} u(-t)\right]=\frac{1}{S+a}+\frac{1}{S-a}$
For $\frac{1}{S+a} \operatorname{Re}\{s\}>-a$
For $\frac{1}{S-a} \operatorname{Re}\{s\}<a$

Referring to the above diagram, combination region lies from -a to a. Hence,
ROC: $-\mathrm{a}<$ Res $<\mathrm{a}$

Causality and Stability

- For a system to be causal, all poles of its transfer function must be right half of s-plane.

- A system is said to be stable when all poles of its transfer function lay on the left half of s-plane.

- A system is said to be unstable when at least one pole of its transfer function is shifted to the right half of s-plane.

- A system is said to be marginally stable when at least one pole of its transfer function lies on the $\mathrm{j} \omega$ axis of s-plane

LAPLACE TRANSFORMS OF SOME COMMON SIGNALS

A. Unit Impulse Function $\delta(t)$:

$$
\mathscr{L}[\delta(t)]=\int_{-\infty}^{\infty} \delta(t) e^{-s t} d t=1 \quad \text { all } s
$$

B. Unit Step Function $u(t)$:

$$
\begin{aligned}
\mathscr{L}[u(t)] & =\int_{-\infty}^{\infty} u(t) e^{-s t} d t=\int_{0^{+}}^{\infty} e^{-s t} d t \\
& =-\left.\frac{1}{s} e^{-s t}\right|_{0^{+}} ^{\infty}=\frac{1}{s} \quad \operatorname{Re}(s)>0 \\
& \text { where } 0^{+}=\lim _{\varepsilon \rightarrow 0}(0+\varepsilon)
\end{aligned}
$$

Some Laplace Transforms Pairs:

$x(t)$	$X(s)$	ROC
$\delta(t)$	1	All s
$u(t)$	$\frac{1}{s}$	$\operatorname{Re}(s)>0$
$-u(-t)$	$\frac{1}{s}$	$\operatorname{Re}(s)<0$
$t u(t)$	$\frac{1}{s^{2}}$	$\operatorname{Re}(s)>0$
$t^{k} u(t)$	$\frac{k!}{s^{k+1}}$	$\operatorname{Re}(s)>0$
$e^{-a t} u(t)$	$\frac{1}{s+a}$	$\operatorname{Re}(s)>-\operatorname{Re}(a)$
$-e^{-a t} u(-t)$	$\frac{1}{s+a}$	$\operatorname{Re}(s)<-\operatorname{Re}(a)$
$t e^{-a t} u(t)$	$\frac{1}{(s+a)^{2}}$	$\operatorname{Re}(s)>-\operatorname{Re}(a)$
$-t e^{-a t} u(-t)$	$\frac{1}{(s+a)^{2}}$	$\operatorname{Re}(s)<-\operatorname{Re}(a)$
$\cos \omega_{0} t u(t)$	$\frac{s}{s^{2}+\omega_{0}^{2}}$	$\operatorname{Re}(s)>0$
$\sin \omega_{0} t u(t)$	$\frac{\omega_{0}}{s^{2}+\omega_{0}^{2}}$	$\operatorname{Re}(s)>0$
$e^{-a t} \cos \omega_{0} t u(t)$	$\frac{s+a}{(s+a)^{2}+\omega_{0}^{2}}$	$\operatorname{Re}(s)>-\operatorname{Re}(a)$
$e^{-a t} \sin \omega_{0} t u(t)$	$\frac{\omega_{0}}{(s+a)^{2}+\omega_{0}^{2}}$	$\operatorname{Re}(s)>-\operatorname{Re}(a)$

UNIT-6

Z-Transform

Z-Transform

Analysis of continuous time LTI systems can be done using z-transforms. It is a powerful mathematical tool to convert differential equations into algebraic equations.

The bilateral (two sided) z -transform of a discrete time signal $\mathrm{x}(\mathrm{n})$ is given as

$$
Z . T[x(n)]=X(Z)=\Sigma_{n=-\infty}^{\infty} x(n) z^{-n}
$$

The unilateral (one sided) z-transform of a discrete time signal $\mathrm{x}(\mathrm{n})$ is given as

$$
Z . T[x(n)]=X(Z)=\Sigma_{n=0}^{\infty} x(n) z^{-n}
$$

Z-transform may exist for some signals for which Discrete Time Fourier Transform (DTFT) does not exist.

Concept of Z-Transform and Inverse Z-Transform

Z-transform of a discrete time signal $\mathrm{x}(\mathrm{n})$ can be represented with $\mathrm{X}(\mathrm{Z})$, and it is defined as

$$
X(Z)=\Sigma_{n=-\infty}^{\infty} x(n) z^{-n} \ldots \ldots
$$

If $Z=r e^{j \omega}$ then equation 1 becomes

$$
\begin{aligned}
X\left(r e^{j \omega}\right) & =\Sigma_{n=-\infty}^{\infty} x(n)\left[r e^{j \omega}\right]^{-n} \\
& =\Sigma_{n=-\infty}^{\infty} x(n)\left[r^{-n}\right] e^{-j \omega n}
\end{aligned}
$$

$$
\begin{equation*}
X\left(r e^{j \omega}\right)=X(Z)=F . T\left[x(n) r^{-n}\right] \ldots \ldots \tag{2}
\end{equation*}
$$

The above equation represents the relation between Fourier transform and Z-transform

$$
\left.X(Z)\right|_{z=e^{j \omega}}=F . T[x(n)]
$$

Inverse Z-transform:

$$
\begin{aligned}
X\left(r e^{j \omega}\right) & =F \cdot T\left[x(n) r^{-n}\right] \\
x(n) r^{-n} & =F \cdot T^{-1}\left[X\left(r e^{j \omega}\right]\right. \\
x(n) & =r^{n} F \cdot T^{-1}\left[X\left(r e^{j \omega}\right)\right] \\
& =r^{n} \frac{1}{2 \pi} \int X\left(r e^{j} \omega\right) e^{j \omega n} d \omega \\
& =\frac{1}{2 \pi} \int X\left(r e^{j} \omega\right)\left[r e^{j \omega}\right]^{n} d \omega \ldots \ldots(3)
\end{aligned}
$$

Substitute $r e^{j \omega}=z$.

$$
\begin{aligned}
& d z=j r e^{j \omega} d \omega=j z d \omega \\
& d \omega=\frac{1}{j} z^{-1} d z
\end{aligned}
$$

Substitute in equation 3.

$$
\begin{gathered}
3 \rightarrow x(n)=\frac{1}{2 \pi} \int X(z) z^{n} \frac{1}{j} z^{-1} d z=\frac{1}{2 \pi j} \int X(z) z^{n-1} d z \\
X(Z)=\sum_{n=-\infty}^{\infty} x(n) z^{-n} \\
x(n)=\frac{1}{2 \pi j} \int X(z) z^{n-1} d z
\end{gathered}
$$

Z-Transform Properties:

Z-Transform has following properties:
Linearity Property:
If $x(n) \stackrel{\text { Z.T }}{\longleftrightarrow} X(Z)$
and $y(n) \stackrel{\text { Z.T }}{\longleftrightarrow} Y(Z)$
Then linearity property states that
$a x(n)+b y(n) \stackrel{\text { Z.T }}{\longleftrightarrow} a X(Z)+b Y(Z)$
Time Shifting Property:
If $x(n) \stackrel{\text { Z.T }}{\longleftrightarrow} X(Z)$
Then Time shifting property states that
$x(n-m) \stackrel{\text { Z.T }}{\longleftrightarrow} z^{-m} X(Z)$
Multiplication by Exponential Sequence Property
If $x(n) \stackrel{\text { Z.T }}{\longleftrightarrow} X(Z)$
Then multiplication by an exponential sequence property states that
$a^{n} \cdot x(n) \stackrel{\mathrm{Z.T}}{\longleftrightarrow} X(Z / a)$
Time Reversal Property
If $x(n) \stackrel{\text { Z.T }}{\longleftrightarrow} X(Z)$
Then time reversal property states that
$x(-n) \stackrel{\text { Z.T }}{\longleftrightarrow} X(1 / Z)$

Differentiation in Z-Domain OR Multiplication by n Property

If $x(n) \stackrel{\text { Z.T }}{\longleftrightarrow} X(Z)$
Then multiplication by n or differentiation in z-domain property states that
$n^{k} x(n) \stackrel{\text { Z.T }}{\longleftrightarrow}[-1]^{k} z^{k} \frac{d^{k} X(Z)}{d Z^{K}}$

Convolution Property

If $x(n) \stackrel{\text { Z.T }}{\longleftrightarrow} X(Z)$
and $y(n) \stackrel{\text { Z.T }}{\longleftrightarrow} Y(Z)$
Then convolution property states that
$x(n) * y(n) \stackrel{\text { Z.T }}{\longleftrightarrow} X(Z) . Y(Z)$

Correlation Property

If $x(n) \stackrel{\text { Z.T }}{\longleftrightarrow} X(Z)$
and $y(n) \stackrel{\text { Z.T }}{\longleftrightarrow} Y(Z)$
Then correlation property states that
$x(n) \otimes y(n) \stackrel{\text { Z.T }}{\longleftrightarrow} X(Z) . Y\left(Z^{-1}\right)$

Initial Value and Final Value Theorems

Initial value and final value theorems of z-transform are defined for causal signal.

Initial Value Theorem

For a causal signal $\mathrm{x}(\mathrm{n})$, the initial value theorem states that

$$
x(0)=\lim _{z \rightarrow \infty} X(z)
$$

This is used to find the initial value of the signal without taking inverse z-transform

Final Value Theorem

For a causal signal $\mathrm{x}(\mathrm{n})$, the final value theorem states that

$$
x(\infty)=\lim _{z \rightarrow 1}[z-1] X(z)
$$

This is used to find the final value of the signal without taking inverse z -transform

Region of Convergence (ROC) of Z-Transform

The range of variation of z for which z-transform converges is called region of convergence of z transform.

Properties of ROC of Z-Transforms

- ROC of z-transform is indicated with circle in z-plane.
- ROC does not contain any poles.
- If $x(n)$ is a finite duration causal sequence or right sided sequence, then the ROC is entire z -plane except at $\mathrm{z}=0$.
- If $x(n)$ is a finite duration anti-causal sequence or left sided sequence, then the ROC is entire z -plane except at $\mathrm{z}=\infty$.
- If $\mathrm{x}(\mathrm{n})$ is a infinite duration causal sequence, ROC is exterior of the circle with radius a. i.e. $|z|>a$.
- If $x(n)$ is a infinite duration anti-causal sequence, ROC is interior of the circle with radius a. i.e. $|\mathrm{z}|<\mathrm{a}$.
- If $x(n)$ is a finite duration two sided sequence, then the ROC is entire z-plane except at z $=0 \& z=\infty$.

The concept of ROC can be explained by the following example:
Example 1: Find z-transform and ROC of $a^{n} u[n]+a^{-n} u[-n-1] a^{n} u[n]+a^{-n} u[-n-1]$

$$
Z . T\left[a^{n} u[n]\right]+Z . T\left[a^{-n} u[-n-1]\right]=\frac{Z}{Z-a}+\frac{Z}{Z \frac{-1}{a}}
$$

$$
R O C:|z|>a \quad R O C:|z|<\frac{1}{a}
$$

The plot of ROC has two conditions as a > 1 and a < , as we do not know a.

In this case, there is no combination ROC.

Here, the combination of ROC is from $\mathrm{a}<|\mathrm{z}|<1 / \mathrm{a}$
Hence for this problem, z-transform is possible when a < 1 .

Causality and Stability

Causality condition for discrete time LTI systems is as follows:
A discrete time LTI system is causal when

- ROC is outside the outermost pole.
- In The transfer function $\mathrm{H}[\mathrm{Z}]$, the order of numerator cannot be grater than the order of denominator.

Stability Condition for Discrete Time LTI Systems

A discrete time LTI system is stable when

- its system function $\mathrm{H}[\mathrm{Z}]$ include unit circle $|\mathrm{z}|=1$.
- all poles of the transfer function lay inside the unit circle $|z|=1$.

Z-Transform of Basic Signals

$x[n]$	$X(z)$	ROC
$\delta[n]$	1	All z
$u[n]$	$\frac{1}{1-z^{-1}}, \frac{z}{z-1}$	$\|z\|>1$
$-u[-n-1]$	$\frac{1}{1-z^{-1}}, \frac{z}{z-1}$	$\|z\|<1$
$\delta[n-m]$	z^{-m}	All z except 0 if $(m>0)$ or ∞ if ($m<0$)
$a^{n} u[n]$	$\frac{1}{1-a z^{-1}}, \frac{z}{z-a}$	$\|z\|>\|a\|$
$-a^{n} u[-n-1]$	$\frac{1}{1-a z^{-1}}, \frac{z}{z-a}$	$\|z<\|a\|$
$n a^{n} u[n]$	$\frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}}, \frac{a z}{(z-a)^{2}}$	$\|z\|>\|a\|$
$-n a^{n} u[-n-1]$	$\frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}}, \frac{a z}{(z-a)^{2}}$	$\|z\|<\|a\|$
$(n+1) a^{n} u[n]$	$\frac{1}{\left(1-a z^{-1}\right)^{2}},\left[\frac{z}{z-a}\right]^{2}$	$\|z\|>\|a\|$
$\left(\cos \Omega_{0} n\right) u[n]$	$\frac{z^{2}-\left(\cos \Omega_{0}\right) z}{z^{2}-\left(2 \cos \Omega_{0}\right) z+1}$	$\|z\|>1$
$\left(\sin \Omega_{0} n\right) u[n]$	$\frac{\left(\sin \Omega_{0}\right) z}{z^{2}-\left(2 \cos \Omega_{0}\right) z+1}$	$\|z\|>1$
$\left(r^{n} \cos \Omega_{0} n\right) u[n]$	$\frac{z^{2}-\left(r \cos \Omega_{0}\right) z}{z^{2}-\left(2 r \cos \Omega_{0}\right) z+r^{2}}$	$\|z\|>r$
$\left(r^{n} \sin \Omega_{0} n\right) u[n]$	$\frac{\left(r \sin \Omega_{0}\right) z}{z^{2}-\left(2 r \cos \Omega_{0}\right) z+r^{2}}$	$\|z\|>r$
$\begin{cases}a^{n} & 0 \leq n \leq N-1 \\ 0 & \text { otherwise }\end{cases}$	$\frac{1-a^{N} z^{-N}}{1-a z^{-1}}$	$\|z\|>0$

Some Properties of the Z-Transform:

Property	Sequence	Transform	ROC
	$x[n]$	$X(z)$	R
	$x_{1}[n]$	$X_{1}(z)$	R_{1}
Linearity	$x_{2}[n]$	$X_{2}(z)$	R_{2}
Time shifting	$a_{1} x_{1}[n]+a_{2} x_{2}[n]$	$a_{1} X_{1}(z)+a_{2} X_{2}(z)$	$R^{\prime} \supset R_{1} \cap R_{2}$
Multiplication by z_{0}^{n}	$x\left[n-n_{0}\right]$	$z^{-n_{0}} X(z)$	$R^{\prime} \supset R \cap\{0<\|z\|<\infty\}$
Multiplication by $e^{j n_{0} n}$	$z_{0}^{n} x[n]$	$X\left(\frac{z}{z_{0}}\right)$	$R^{\prime}=\left\|z_{0}\right\| R$
Time reversal	$e^{j \Omega_{0} n} x[n]$	$X\left(e^{\left.-j \Omega_{0} z\right)}\right.$	$R^{\prime}=R$
Multiplication by n	$x[-n]$	$X\left(\frac{1}{z}\right)$	$R^{\prime}=\frac{1}{R}$
Accumulation	$n x[n]$	$-z \frac{d X(z)}{d z}$	$R^{\prime}=R$
Convolution	$\sum^{n} x[n]$	$\frac{1}{1-z^{-1}} X(z)$	$R^{\prime} \supset R \cap\{\|z\|>1\}$

Inverse \mathbf{Z} transform:

Three different methods are:

1. Partial fraction method
2. Power series method
3. Long division method

Partial fraction method:

- In case of LTl systems, commonly encountered form of z-transform is

$$
\begin{gathered}
X(z)=\frac{B(z)}{A(z)} \\
X(z)=\frac{b_{0}+b_{1} z^{-1}+\ldots+b_{M} z^{-M}}{a_{0}+a_{1} z^{-1}+\ldots+a_{N} z^{-N}}
\end{gathered}
$$

Usually $M<N$

- If $M>N$ then use long division method and express $X(z)$ in the form

$$
X(z)=\sum_{k=0}^{M-N} f_{k} z^{-k}+\frac{B(z)}{A(z)}
$$

where $B(z)$ now has the order one less than the denominator polynomial and use partial fraction method to find z-transform

- The inverse z-transform of the terms in the summation are obtained from the transform pair and time shift property

$$
\begin{gathered}
1 \stackrel{z}{\longleftrightarrow} \delta[n] \\
z^{-n_{o}} \stackrel{z}{\longleftrightarrow} \delta\left[n-n_{o}\right]
\end{gathered}
$$

- If $X(z)$ is expressed as ratio of polynomials in z instead of z^{-1} then convert into the polynomial of z^{-1}
- Convert the denominator into product of first-order terms

$$
X(z)=\frac{b_{0}+b_{1} z^{-1}+\ldots+b_{M} Z^{-M}}{a_{0} \prod_{k=1}^{N}\left(1-d_{k} z^{-1}\right)}
$$

where d_{k} are the poles of $X(z)$

For distinct poles

- For all distinct poles, the $X(z)$ can be written as

$$
X(z)=\sum_{k=1}^{N} \frac{A_{k}}{\left(1-d_{k} z^{-1}\right)}
$$

- Depending on ROC, the inverse z-transform associated with each term is then determined by using the appropriate transform pair
- We get

$$
\begin{array}{r}
A_{k}\left(d_{k}\right)^{n} u[n] \stackrel{z}{\longleftrightarrow} \frac{A_{k}}{1-d_{k} z^{-1}}, \\
\text { with ROC } z>d_{k} \quad \text { OR } \\
-A_{k}\left(d_{k}\right)^{n} u[-n-1] \stackrel{z}{\longleftrightarrow} \frac{A_{k}}{1-d_{k} z^{-1}}, \\
\text { with ROC } z<d_{k}
\end{array}
$$

- For each term the relationship between the ROC associated with $X(z)$ and each pole determines whether the right-sided or left sided inverse transform is selected

For Repeated poles

- If pole d_{i} is repeated r times, then there are r terms in the partialfraction expansion associated with that pole

$$
\frac{A_{i_{1}}}{1-d_{i} Z^{-1}}, \frac{A_{i_{2}}}{\left(1-d_{i} Z^{-1}\right)^{2}}, \ldots, \frac{A_{i_{r}}}{\left(1-d_{i} Z^{-1}\right)^{r}}
$$

- Here also, the ROC of $X(z)$ determines whether the right or left sided inverse transform is chosen.
$A \frac{(n+1) \ldots(n+m-1)}{(m-1)!}\left(d_{i}\right)^{n} u[n] \stackrel{z}{\longleftrightarrow} \frac{A}{\left(1-d_{i} z^{-1}\right)^{m}}, \quad$ with $\mathrm{ROC}|z|>d_{i}$
- If the ROC is of the form $|z|<d_{i}$, the left-sided inverse z-transform is chosen, ie.
$-A \frac{(n+1) \ldots(n+m-1)}{(m-1)!}\left(d_{i}\right)^{n} u[-n-1] \stackrel{z}{\longleftrightarrow} \frac{A}{\left(1-d_{i} z^{-1}\right)^{m}}, \quad$ with ROC $|z|<d_{i}$

Deciding ROC

- The ROC of $X(z)$ is the intersection of the ROCs associated with the individual terms in the partial fraction expansion.
- In order to chose the correct inverse z-transform, we must infer the ROC of each term from the ROC of $X(z)$.
- By comparing the location of each pole with the ROC of $X(z)$.
- Chose the right sided inverse transform: if the ROC of $X(z)$ has the radius greater than that of the pole associated with the given term
- Chose the left sided inverse transform: if the ROC of $X(z)$ has the radius less than that of the pole associated with the given term

Partial fraction method

- It can be applied to complex valued poles
- Generally the expansion coefficients are complex valued
- If the coefficients in $X(z)$ are real valued, then the expansion coefficients corresponding to complex conjugate poles will be complex conjugate of each other
- Here we use information other than ROC to get unique inverse transform
- We can use causality, stability and existence of DTFT
- If the signal is known to be causal then right sided inverse transform is chosen
- If the signal is stable, then t is absolutely summable and has DTFT
- Stability is equivalent to existence of DTFT, the ROC includes the unit circle in the z-plane, ie. $|z|=1$
- The inverse z-transform is determined by comparing the poles and the unit circle
- If the pole is inside the unit circle then the right-sided inverse z-transform is chosen
- If the pole is outside the unit circle then the left-sided inverse z-transform is chosen

Power series expansion method

- Express $X(z)$ as a power series in z^{-1} or z as given in z-transform equation
- The values of the signal $x[n]$ are then given by coefficient associated with z^{-n}
- Main disadvantage: limited to one sided signals
- Signals with ROCs of the form $|z|>a$ or $|z|<a$
- If the ROC is $|z|>a$, then express $X(z)$ as a power series in z^{-1} and we get right sided signal
- If the ROC is $|z|<a$, then express $X(z)$ as a power series in z and we get left sided signal

Long division method:

- Find the z-transform of

$$
X(z)=\frac{2+z^{-1}}{1-\frac{1}{2} z^{-1}}, \text { with ROC }|z|>\frac{1}{2}
$$

- Solution is: use long division method to write $X(z)$ as a power series in z^{-1}, since ROC indicates that $x[n]$ is right sided sequence
- We get

$$
X(z)=2+2 z^{-1}+z^{-2}+\frac{1}{2} z^{-3}+\ldots
$$

- Compare with z-transform

$$
X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}
$$

- We get

$$
\begin{aligned}
x[n]=2 \delta[n]+ & 2 \delta[n-1]+\delta[n-2] \\
& +\frac{1}{2} \delta[n-3]+\ldots
\end{aligned}
$$

- If we change the ROC to $|z|<\frac{1}{2}$, then expand $X(z)$ as a power series in z using long division method
- We get

$$
X(z)=-2-8 z-16 z^{2}-32 z^{3}+\ldots
$$

- We can write $x[n]$ as

$$
\begin{aligned}
x[n]=-2 \delta[n]- & 8 \delta[n+1]-16 \delta[n+2] \\
& -32 \delta[n+3]+\ldots
\end{aligned}
$$

- Find the z-transform of

$$
X(z)=e^{z^{2}}, \text { with ROC all } z \text { except }|z|=\infty
$$

- Solution is: use power series expansion for e^{a} and is given by

$$
e^{a}=\sum_{k=0}^{\infty} \frac{a^{k}}{k!}
$$

- We can write $X(z)$ as

$$
\begin{gathered}
X(z)=\sum_{k=0}^{\infty} \frac{\left(z^{2}\right)^{k}}{k!} \\
X(z)=\sum_{k=0}^{\infty} \frac{z^{2 k}}{k!}
\end{gathered}
$$

- We can write $x[n]$ as

$$
x[n]= \begin{cases}0 & n>0 \text { or } n \text { is odd } \\ \frac{1}{\left(\frac{-n}{2}\right)!}, & \text { otherwise }\end{cases}
$$

Example: A finite sequence $x[n]$ is defined as

$$
x[n]=\{5,3,-2,0,4,-3\}
$$

Find $X(z)$ and its ROC.
Sol: We know that

$$
X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}=\sum_{n=-2}^{3} x[n] z^{-n}
$$

$$
\begin{aligned}
& =x[-2] z^{2}+x[-1] z+x[0]+x[1] z^{-1}+x[2] z^{-2}+x[3] z^{-3} \\
& =5 z^{2}+3 z-2+4 z^{-2}-3 z^{-3}
\end{aligned}
$$

For z not equal to zero or infinity, each term in $X(z)$ will be finite and consequently $X(z)$ will converge. Note that $X(z)$ includes both positive powers of z and negative powers of z. Thus, from the result we conclude that the ROC of $X(z)$ is $\mathbf{0}<l z l<\mathrm{m}$.

Example: Consider the sequence

$$
x[n]= \begin{cases}a^{n} & 0 \leq n \leq N-1, a>0 \\ 0 & \text { otherwise }\end{cases}
$$

Find $X(z)$ and plot the poles and zeros of $\mathbf{X}(z)$.
Sol:

$$
X(z)=\sum_{n=0}^{N-1} a^{n} z^{-n}=\sum_{n=0}^{N-1}\left(a z^{-1}\right)^{n}=\frac{1-\left(a z^{-1}\right)^{N}}{1-a z^{-1}}=\frac{1}{z^{N-1}} \frac{z^{N}-a^{N}}{z-a}
$$

From the above equation we see that there is a pole of $(N \subset 1)^{t h}$ order at $z=0$ and a pole at $z=a$.
Since $\mathrm{x}[\mathrm{n}]$ is a finite sequence and is zero for $n<0$, the ROC is $I z I>0$. The N roots of the numerator polynomial are at

$$
z_{k}=a e^{j(2 \pi k / N)} \quad \overparen{k}^{k}=0,1, \ldots, N-1
$$

The root at $\mathrm{k}=\mathbf{0}$ cancels the pole at $z=a$. The remaining zeros of $X(z)$ are at

$$
z_{k}=a e^{f(2 \pi k / N)} \quad k=1, \ldots, N-1
$$

The pole-zero plot is shown in the following figure with $\mathrm{N}=8$

