Code: 13R00101

www.FirstRanker.com

## B.Pharm I Year (R13) Supplementary Examinations December 2016

# REMEDIAL MATHEMATICS

Time: 3 hours Max. Marks: 70

#### PART - A

(Compulsory Question)

\*\*\*\*

1 Answer the following:  $(10 \times 02 = 20 \text{ Marks})$ 

- (a) Find the quadratic equation whose roots are  $3 + \sqrt{2}$ ,  $3 \sqrt{2}$ .
- (b) Find the quadratic form from the following equation  $\sqrt{2x+3} \sqrt{x-2} = 2$ .
- (c) Show that  $\cos^2 45^\circ + \cos^2 135^\circ + \cos^2 225^\circ + \cos^2 315^\circ = 2$ .
- (d) Prove that  $\tan 3A = \frac{3tanA tan^3A}{1 3tan^2A}$
- (e) Show that points (4,-2), (2,-4), (7,1) are collinear.
- (f) Find the points which divide the line segment joining A(1,-3) and B(-3,9) in the ratio 1:3 externally.
- (g) Evaluate  $\lim_{x\to 1} \frac{2x+1}{3x^2-4x+5}$ .
- (h) Find the first derivative of the equation  $y = 2x^2 + 5x + 7$ .
- (i) Define degree of differential equation and give one example.
- (j) Show that  $L(t) = \frac{1}{s^2}$ .

### PART - B

(Answer all five units,  $5 \times 10 = 50 \text{ Marks}$ )

## UNIT - I

Solve the equations 2x + y - z = 1, x - y + z = 2, 5x + 5y - 4z = 3 by Cramer's rule.

#### OF

Write the applications of logarithms in pharmaceutical computations.

### |UNIT - II

4 Prove that  $\frac{Sec8A-1}{Sec4A-1} = \frac{Tan8A}{Tan2A}$ 

#### OR

5 Show that  $4Sin \frac{5\theta}{2} \cdot cos \frac{3\theta}{2} \cdot cos 3\theta = Sin\theta - Sin2\theta + Sin4\theta + Sin7\theta$ .

#### [UNIT - III

- 6 (a) Find the equation of the line parallel to y-axis and passing through (-7, -11).
  - (b) Find the equation of the line perpendicular to y-axis and passing through (5, 6).

#### OR

7 Find the angles of the triangle whose sides are x + y - 4 = 0, 2x + y - 6 = 0 and 5x + 3y - 15 = 0.

#### UNIT - IV

- 8 (a) Find  $d^2y/dx^2$  when  $5x^2 + 2hxy + 4y^2 + 2gx + 4fy = 0$ .
  - (b) Evaluate  $\int Sec^3x \ dx$ .

#### OR

- 9 (a) Find the first and second partial derivatives of  $Z = x^4 + y^3 + 4c xy$ .
  - (b) Evaluate  $\int_0^1 K x e^x dx$ .

### UNIT - V

10 Solve  $\frac{dy}{dx} = (4x + y + 1)^2$ .

OR

- 11 Find the Laplace transform of:
  - (a)  $\frac{e^{-at}-1}{a}$
  - (b) Sin2t cost.
  - (c)  $e^{4t}$  Sin2t cost.