www.FirstRanker.com
Code: 15R00101
B.Pharm I Year I Semester (R15) Regular \& Supplementary Examinations January 2017 REMEDIAL MATHEMATICS
Time: 3 hours
Max. Marks: 70
PART - A
(Compulsory Question)

1
Answer the following: ($10 \times 02=20$ Marks $)$
(a) The sum of p terms of A.P is $p^{2}+4 p$, find the $\mathrm{n}^{\text {th }}$ term.
(b) Evaluate:

$$
\sum_{k=1}^{11}\left(2+3^{k}\right)
$$

(c) If $\sec \theta=x+\frac{1}{4 x}$ show that $\sec \theta+\tan \theta=2 x$.
(d) Show that $\operatorname{Cos}^{2} 48^{\circ}-\operatorname{Sin}^{2} 12^{\circ}=\frac{\sqrt{5+1}}{8}$.
(e) Find the distance between the two parallel line $3 x+4 y+3=0,3 x+4 y+7=0$.
(f) Write the parametric equations of the straight line passing through (1,2) and having inclination 60°.
(g) Find the value of $\lim _{x \rightarrow 0} \frac{\sin b x}{x \cos x}$.
(h) Find the derivative of the function $y=e^{x}+x^{n}+5 \log x$.
(i) Solve $x d y=y d x$.
(j) Find the value of $L\left(\operatorname{Cos}^{2} 2 t\right)$.

PART - B
(Answer all five units, $5 \times 10=50$ Marks)

UNIT - I

3 Resolve $\frac{x^{2}-3}{(x+2)\left(x^{2}+1\right)}$ into partial fractions.

UNIT - II

Prove that $(\sin x-\cos x)^{4}+6(\sin x+\cos x)^{2}+4\left(\sin ^{6} x+\cos ^{6} x\right)=13$.
If x, y, z are cyclic, show that $\frac{x-y}{1+x y}=\pi\left(\frac{x-y}{1+x y}\right)$.
UNIT - III
6
Find the equation of the straight line passing through the point of intersection of lines $x+3 y-1=0$, $x-2 y+4=0$ and perpendicular to $2 x+3 y=0$.

OR
Find the circumcentre of the triangle formed by the points $(1,3),(0,-2),(-3,1)$.
UNIT - IV
If $u=\cos ^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$ then show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\frac{-1}{2} \cot u$.
OR
Evaluate $\int \frac{1}{1+x^{3}} d x$.

UNIT - V

Solve $\sqrt{1+x^{2}+y^{2}+x^{2} y^{2}}+x y \frac{d y}{d x}=0$.
OR
11 (a) Find the Laplace transform of $t^{2} \sin a t$.
(b) Evaluate $\int_{0}^{\infty} t e^{-2 t} \sin 3 t d t$.

