FirstRanker.com

www.FirstRanker.com

B.Pharm I Year (R13) Supplementary Examinations June 2017 **REMEDIAL MATHEMATICS**

Time: 3 hours

Max. Marks: 70

PART - A (Compulsory Question)

- 1 Answer the following: (10 X 02 = 20 Marks)
 - (a) Find the 10th term of the A.P., 2, 0, -2, 4.....
 - (b) If $x = 1 + \log_a bc$, $y = 1 + \log_b ca$ and $z = 1 + \log_c ab$, prove that xyz = xy + yz + zx.
 - (c) Prove that $(1 \cos^2 \theta)$. $Cosec^2 \theta = 1$.
 - (d) Find the values of $Cosec 60^\circ sec 45^\circ + cot 30^\circ$.
 - (e) Find the distance between the points (2, 3) and (1, 3).
 - (f) Find the ratio in which P(-1, -12) divides the line joining the points A(3, 4) and B(1, -4).
 - (g) Evaluate $\lim_{X\to 2} \frac{x^2-4}{x-2}$.
 - (h) Find $\frac{dy}{dx}$ when $y = 7x^2 + 9x + 12$.
 - (i) Determine the order and degree of the differential equations $\left(\frac{dy}{dx}\right)^3 + 5y = 0$.
 - (j) Find the Laplace transforms of $t^2 3t + 5$.

PART - B

(Answer all five units, 5 X 10 = 50 Marks)

UNIT - I

OR

2 Find the sum of first 7 terms of the series 3, 12, 48,.....

3 Resolve:
$$\frac{5x+2}{(1+3x)(1+2x)}$$
 into sum of partial fraction.

OR

- 4 Show that $\frac{tan69^\circ + tan66^\circ}{1 tan69^\circ tan66^\circ} = -1$.
- 5 If $sin\phi = \frac{-5}{13}$ and ϕ is in third quadrant then find the value of $5cot^2\phi + 13cosec\phi$.

UNIT - III

6 Find the equation of the straight line perpendicular to 5x - 3y + 1 = 0 and passing through the points (4, -3).

OR

7 Find the acute angle between the two lines 3x + 5y = 7 and 2x - y + 4 = 0.

UNIT - IV

8 If $u = x^3 + y^3 - x^2y + xy^2$ then find the value of $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}$.

OR

9 Show that the area of a rectangle inscribed in a circle is maximum when it is square.

UNIT - V

- 10 Solve $(x + y)^2 \frac{dy}{dx} = a^2$.
- 11 Find the Laplace transforms of $e^{2t}(2t^2 3t + 4)$.

OR

www.FirstRanker.com