REMEDIAL MATHEMATICS

Time: 3 hours
Max. Marks: 70

PART - A

(Compulsory Question)

1 Answer the following: ($10 \times 02=20$ Marks $)$
(a) Find the $10^{\text {th }}$ term of the A.P., $2,0,-2,4$
(b) If $x=1+\log _{\mathrm{a}} \mathrm{bc}, \mathrm{y}=1+\log _{\mathrm{b}}$ ca and $\mathrm{z}=1+\log _{\mathrm{c}} \mathrm{ab}$, prove that $\mathrm{xyz}=\mathrm{xy}+\mathrm{yz}+\mathrm{zx}$.
(c) Prove that $\left(1-\cos ^{2} \theta\right) \cdot \operatorname{Cosec}^{2} \theta=1$.
(d) Find the values of $\operatorname{Cosec} 60^{\circ}-\sec 45^{\circ}+\cot 30^{\circ}$.
(e) Find the distance between the points $(2,3)$ and $(1,3)$.
(f) Find the ratio in which $P(-1,-12)$ divides the line joining the points $A(3,4)$ and $B(1,-4)$.
(g) Evaluate $\lim _{X \rightarrow 2} \frac{x^{2}-4}{X-2}$.
(h) Find $\frac{d y}{d x}$ when $y=7 \mathrm{x}^{2}+9 \mathrm{x}+12$.
(i) Determine the order and degree of the differential equations $\left(\frac{d y}{d x}\right)^{3}+5 y=0$.
(j) Find the Laplace transforms of $t^{2}-3 t+5$.

PART - B
(Answer all five units, $5 \times 10=50$ Marks)

UNIT - I

Find the sum of first 7 terms of the series $3,12,48$

OR

Resolve: $\frac{5 x+2}{(1+3 x)(1+2 x)}$ into sum of partial fraction.

UNIT -II

Show that $\frac{\tan 69^{\circ}+\tan 66^{\circ}}{1-\tan 69^{\circ} \tan 66^{\circ}}=-1$.

OR

If $\sin \varnothing=-5 / 13$ and \varnothing is in third quadrant then find the value of $5 \cot ^{2} \emptyset+13 \operatorname{cosec} \varnothing$.
UNIT - III
Find the equation of the straight line perpendicular to $5 x-3 y+1=0$ and passing through the points $(4,-3)$.

OR
Find the acute angle between the two lines $3 x+5 y=7$ and $2 x-y+4=0$.

UNIT - IV

If $u=x^{3}+y^{3}-x^{2} y+x y^{2}$ then find the value of $x^{2} \frac{\partial^{2} u}{\partial x^{2}}+2 x y \frac{\partial^{2} u}{\partial x \partial y}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}$.
OR
Show that the area of a rectangle inscribed in a circle is maximum when it is square.

UNIT - V

Solve $(x+y)^{2} \frac{d y}{d x}=a^{2}$.
OR
Find the Laplace transforms of $e^{2 t}\left(2 t^{2}-3 t+4\right)$.

