PART - A

(Compulsory Question)
1 Answer the following: ($10 \times 02=20$ Marks)
(a) Find the middle term of the arithmetic progression $6,13,20,--------, 216$.
(b) Find the values of k for which the system of equations $k x-y=2,6 x-2 y=3$ has a unique solution.
(c) If $\sin A=\frac{3}{4}$, find $\cos A$ and $\tan A$.
(d) Prove that $\left(1+\tan ^{2} \theta\right)(1+\sin \theta)(1-\sin \theta)=1$.
(e) Find a point on the y-axis which is equidistant from $A(6,5)$ and $B(-4,3)$.
(f) Find the coordinates of the point which divides the line segment joining the points $(-1,3)$ and (4, -7) in the ratio $3: 4$ internally.
(g) Find $\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-1}{x}$.
(h) If $f(x)=x e^{x} \sin x$, then find $f^{\prime}(x)$.
(i) Solve the differential equation $\sec ^{2} x \tan y d x+\sec ^{2} y \tan x d y=0$.
(j) Find the Laplace transform of $f(t)=(\sin t-\cos t)^{2}$.

PART - B

(Answer all five units, $5 \times 10=50$ Marks)

UNIT - I

2 (a) The sum of two numbers is 15 . If the sum of their reciprocals is $\frac{3}{10}$, find the numbers.
(b) If twice the son's age in years is added to the father's age, the sum is 70 . But if twice the father's age is added to the son's age, the sum is 95 . Find the ages of father and son.

OR
3 (a) If $A=\left[\begin{array}{ll}0 & 1 \\ 2 & 3\end{array}\right]$ and $B=\left[\begin{array}{cc}1 & 0 \\ 2 & -3\end{array}\right]$, compute the product $A B$ and $B A$ and show that $A B$ \# $B A$.
(b) Resolve $\frac{x-4}{x^{2}-5 x+6}$ into partial fractions.

UNIT - II
4 (a) If $\sec \alpha=\frac{5}{4}$, evaluate $\frac{1-\tan \alpha}{1+\tan \alpha}$.
(b) If $\sin \theta+\sin ^{2} \theta=1$, prove that $\cos ^{2} \theta+\cos ^{4} \theta=1$.

OR

5 (a) If $\sec \theta+\tan \theta=p$, then show that $\frac{p^{2}-1}{p^{2}+1}=\sin \theta$.
(b) Prove that $\frac{\sin \theta-2 \sin ^{3} \theta}{2 \cos ^{3} \theta-\cos \theta}=\tan \theta$.

UNIT - III

6 (a) If the area of $\triangle A B C$ formed by $A(x, y), B(1,2)$ and $C(2,1)$ is 6 square units, then prove that $x+y=15$ or $x+y+9=0$.
(b) Find the equation of straight line joining the points $\left(a t_{1}^{2}, 2 a t_{1}\right)$ and $\left(a t_{2}^{2}, 2 a t_{2}\right)$.

OR
7 (a) Find the angle between straight lines $2 x+y+4=0, y-3 x=7$.
(b) Find the equation of straight line passing through (x_{1}, y_{1}) and perpendicular to $a x+b y+c=0$.
www.FirstRanker.com
Code: 13R00101

UNIT - IV

8 (a) Prove that $\lim _{x \rightarrow 0} \frac{1}{x}$ does not exist.
(b) Find the derivative of $f(x)=\frac{x \cos x}{\sqrt{1+x^{2}}}$.

OR

9 (a) Find the extreme values of $3 x^{4}-4 x^{3}+1$.
(b) Evaluate $\int_{0}^{1}\left(c^{x}+5\right) d x$.

UNIT - V

10 (a) Obtain the differential equation of all circles of radius a and centre at (h, k).
(b) If the temperate of the air is $30^{\circ} \mathrm{C}$ and the substance cools from $100^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ in 5 minutes, find when the temperature will be $40^{\circ} \mathrm{C}$.
OR

11 (a) Find the Laplace transform of:

$$
\text { (i) } f(t)=e^{2 t}\left[3 t^{5}-\cos 4 t\right] . \quad \text { (ii) } f(t)-e^{-t} \sin ^{2} t .
$$

(b) Find the Laplace transform of $f(\mathrm{t})$ defined as;

$$
\begin{aligned}
f(t) & =1, \text { if } 0<t \leq 1 \\
& =t, \text { if } 1<t \leq 2 \\
& =0, \text { if } t>2
\end{aligned}
$$

