B.Tech I Year (R09) Regular \& Supplementary Examinations, June 2013

MATHEMATICS - I
(Common to all branches)
Time: 3 hours
Max. Marks: 70

Answer any FIVE questions

 All questions carry equal marks1 (a) Solve: $\left(1+e^{x / y}\right) d x+\left(1-\frac{x}{y}\right) e^{\frac{x}{y}} d y=0$.
(b) Solve: $\mathrm{xdx}+\mathrm{ydy}=\frac{x d y-y d x}{x^{2}+y^{2}}$.

2 (a) Solve: $\left(D^{3}-1\right) y=\left(e^{x}+1\right)^{2}$.
(b) Solve: $\left(D^{2}-k^{2}\right) y=\cos h k x$.

3 (a) Find the points on the surface $z^{2}=x y+1$ that are nearest to the origin.
(b) Find the stationary points of $u(x, y)=\sin x \sin y \sin (x+y)$ where $0<x<\pi, 0<y<\pi$ and find the maximum u.

4 (a) Trace the curve $\mathrm{y}=\mathrm{x}^{3}$.
(b) Trace the curve $y=(x-1)(x-2)(x-3)$.

5 (a) Evaluate: $\int_{0}^{1} \int_{x}^{\sqrt{x}}\left(x^{2}+y^{2}\right) d x d y$,
(b) Evaluate the integral by changing the order of integration: $\int_{0}^{1} \int_{x}^{\sqrt{2-x^{2}}} \frac{x d y d x}{\sqrt{x^{2}+y^{2}}}$.

6 (a) Find the Laplace transform of $\left\{\left(\sqrt{t}-\frac{1}{\sqrt{t}}\right)^{3}\right\}$.
(b) Find: $L^{-1}\left\{\frac{1}{2} \log \left(\frac{s^{2}+b^{2}}{s^{2}+a^{2}}\right)\right\}$.

7 (a) Solve the
D.E. $y^{\prime \prime}+2 y^{\prime}+5 y=8 \sin t+4 \cos t, y(0)=1, y\left(\frac{\pi}{4}\right)=\sqrt{2}$. Using Laplace transform.
(b) Using Laplace transform, evaluate $\int_{0}^{\infty} e^{-4 t} \sin ^{3} t d t$.

8 (a) Use divergence theorem to evaluate $\int_{s} \bar{F} \cdot \bar{N} d s$, where $\bar{F}=x^{3} \boldsymbol{i}+y^{3} \boldsymbol{j}+z^{3} \boldsymbol{k}$, and S is the surface of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$.
(b) Evaluate: $\nabla\left[\nabla \cdot\left(\frac{\bar{R}}{r}\right)\right]$, where $\bar{R}=\mathrm{xi}+\mathrm{yj}+\mathrm{zk}, \mathrm{r}=|\bar{r}|$.
B.Tech I Year (R09) Regular \& Supplementary Examinations, June 2013

MATHEMATICS - I
(Common to all branches)
Time: 3 hours
Max. Marks: 70
Answer any FIVE questions
All questions carry equal marks

1 (a) Solve: $\sec ^{2} y \frac{d y}{d x}+2 x \tan y=x^{3}$.
(b) Solve : $2 y \cos y^{2} \frac{d y}{d x}-\frac{2}{x+1} \sin y^{2}=(x+1)^{3}$.

2 (a) Solve: $\left(D^{2}-1\right) y=2 e^{x}+3 x$.
(b) Solve: $\left(D^{2}+1\right) y=\operatorname{cosec} x$.

3 (a) Find the shortest and the longest distance from the point (1, 2, -1) to the sphere $x^{2}+y^{2}+$ $z^{2}=24$
(b) Find the volume of the largest rectangular parallelopiped that can be inscribed in the ellipsoid $4 x^{2}+4 y^{2}+9 z^{2}=36$.

4 (a) Trace the curve $r=a(1+\cos \theta)$.
(b) Trace the curve $r=a+b \cos \theta, a>b$.

5 (a) Evaluate: $\int_{0}^{5} \int_{0}^{x^{2}} x\left(x^{2}+y^{2}\right) d x d y$.
(b) Evaluate the integral by changing the order of integration: $\int_{0}^{a} \int_{x / a}^{\sqrt{x / a}}\left(x^{2}+y^{2}\right) d x d y$.

6 (a) Find the Laplace transform of: (i) $\left\{\frac{\sin ^{2} t}{t}\right\}$. (ii) $\left\{\frac{1-\cos a t}{t}\right\}$.
(b) Find: $L^{-1}\left\{\frac{s}{\left(s^{2}+a^{2}\right)^{2}}\right\}$ using convolution theorem.

7 (a) Solve the D.E. $y^{\prime \prime}+4 y^{\prime}+4 y=4 e^{-2 t}, y(0)=-1, y^{\prime}(0)=4$. Using Laplace transform.
(b) Solve the D.E $\frac{d y}{d t}+2 y+\int_{0}^{t} y d t=2 \cos t, y(0)=1$. Using Laplace transform.

8 (a) If \bar{A} is a constant vector and $\bar{R}=x \bar{i}+y \bar{j}+z \bar{k}$, prove that $\nabla \times\left(\frac{\bar{A} \times \bar{r}}{r^{n}}\right)=\frac{(2-n) \bar{A}}{r^{n}}+\frac{n(\bar{r} \cdot \bar{A}) \bar{r}}{r^{n+2}}$.
(b) If $\bar{F}=\left(5 x y-6 x^{2}\right) \boldsymbol{i}+(2 y-4 x) \boldsymbol{j}$, evaluate $\int_{c} \bar{F} \cdot d \bar{R}$, where C is the curve in the xy-plane $y=x^{3}$ from $(1,1)$ to $(2,8)$.

Answer any FIVE questions
All questions carry equal marks

1 (a) Solve: $x \frac{d y}{d x}+y=x^{3} y^{6}$.
(b) Solve : $\frac{d y}{d x}+\frac{y}{x}=y^{2} x \sin x$.

2 (a) Solve: $\left(D^{2}-3 D+2\right) y=\cos h x$.
(b) Solve: $(D+2)(D-1)^{2} 4=e^{-2 x}+2 \sin h x$.

3 (a) Prove that the maximum value of $x^{m} y^{n} z^{p}$ under the condition $x+y+z=a$ is $m^{m} n^{n} p^{p} a^{m+n+p}$ / $(m+n+p)^{m+n+p}$.
(b) Find the maximum and minimum distance from the origin to the curve $5 x^{2}+6 x y+5 y^{2}-8=0$.

4 (a) Trace the curve $x=a(\theta+\sin \theta), y=a(1+\cos \theta)$.
(b) Trace the curve $x=a(\theta-\sin \theta), y=a(1-\cos \theta)$.

5 (a) Evaluate: $\int_{0}^{2} \int_{0}^{x} e^{x+y} d y d x$.
(b) Change the order of integration in $\int_{0}^{a} \int_{y}^{a} \frac{x d x d y}{x^{2}+y^{2}}$ and hence evaluate the same.

6 (a) Find the Laplace transform of $\left\{e^{-4 t} \int_{0}^{t} \frac{\sin 3 t}{t} d t\right\}$.
(b) Find $L^{-1}\left\{\frac{1}{\left(s^{2}+a^{2}\right)^{2}}\right\}$. Using convolution theorem.

7 (a) Solve the D.E. $y^{\prime \prime}+2 y^{\prime}+y=t, y(0)=-3, y(1)=-1$. Using Laplace transform.
(b) Solve the integral equation $y(t)=t^{2}+\int_{0}^{t} y(u) \sin (t-u) d u$, using Laplace transform.

8 (a) Find the angle between the surfaces $x^{2}+y^{2}+z^{2}=9$ and $z=x^{2}+y^{2}-3$ at the point (2,-1, 2).
(b) Apply Greens theorem to evaluate $\int_{C}\left[\left(2 x^{2}-y^{2}\right) d x+\left(x^{2}+y^{2}\right) d y\right]$, where C is the boundary of the area enclosed by the x-axis and upper half of the circle $x^{2}+y^{2}=a^{2}$.
(Common to all branches)
Time: 3 hours
Max. Marks: 70

Answer any FIVE questions All questions carry equal marks

1 (a) Solve : $\frac{d y}{d x}+y x=y^{2} e^{x^{2} / 2} \sin x$.
(b) Solve : $x \frac{d y}{d x}+y=y^{2} x^{3} \cos x$.

2 (a) Solve: $\left(D^{2}-5 D+6\right) y=x e^{4 x}$.
(b) Solve: $\left(D^{2}+a^{2}\right) y=\operatorname{Sec} a x$.

3 (a) Find a point on the plane $3 x+2 y+z-12=0$, which is nearest to the origin.
(b) Prove that it the perimeter of triangle is constant there its area is maximum when the triangle is equilateral.

4 (a) Prove that the volume of revolution of $r^{2}=a^{2} \cos 2 \theta$ about the initial line is $\frac{\pi a^{3}}{6 \sqrt{2}}[3 \log (\sqrt{2}+1)-\sqrt{2}]$.
(b) Determine the volume of the solid generated by revolving the lemicon $r=a+b \cos \theta$ $(a>b)$ about the initial line.

5 (a) Evaluate: $\int_{0}^{1} \int_{y}^{1} \frac{d x d y}{\sqrt{\left(1-x^{2}\right)\left(1-y^{2}\right)}}$.
(b) Change the order of integration in $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} y^{2} d y d x$ and evaluate.

6 (a) Find the Laplace transform of $\left\{2^{t}+\frac{\cos 2 t-\cos 3 t}{t}+t \sin t\right\}$.
(b) Apply convolution theorem to find $L^{-1}\left\{\frac{s}{\left(s^{2}+a^{2}\right)^{2}}\right\}$.

7 (a) Solve the D.E. $y^{\prime \prime}+9 y=\cos 2 t, y(0)=1, y\left(\frac{\pi}{2}\right)=-1$. Using Laplace transform.
(b) Solve the integral equation $y(t)=1+\int_{0}^{t} y(u) \sin (t-u) d u$, using Laplace transform.

8 (a) A vector field is given by $\vec{A}=\left(x^{2}+x y^{2}\right) \bar{i}+\left(y^{2}+x^{2} y\right) \bar{j}$. Show that the field is irrotational and find the scalar potential.
(b) Use the divergence theorem to show that $\int_{S} \nabla r^{2} . d \bar{S}=6 \mathrm{~V}$, where S is any closed surface enclosing a volume V and $\bar{r}=\mathrm{xi}+\mathrm{yj}+\mathrm{zk}$.

