

Code: 9ABS104

B.Tech I Year (R09) Regular & Supplementary Examinations, June 2013 MATHEMATICS - I

(Common to all branches)

Time: 3 hours

Max. Marks: 70

Answer any FIVE questions All questions carry equal marks

1 (a) Solve: $\left(1 + e^{\frac{x}{y}}\right)dx + \left(1 - \frac{x}{y}\right)e^{\frac{x}{y}}dy = 0.$

(b) Solve : x dx + y dy =
$$\frac{x^2 + y^2}{x^2 + y^2}$$

2 (a) Solve :
$$(D^3 - 1)y = (e^x + 1)^2$$
.

- (b) Solve : $(D^2 k^2)y = \cos h kx$.
- 3 (a) Find the points on the surface $z^2 = xy + 1$ that are nearest to the origin.
 - (b) Find the stationary points of $u(x, y) = \sin x \sin y \sin(x + y)$ where $0 < x < \pi$, $0 < y < \pi$ and find the maximum u.
- 4 (a) Trace the curve $y = x^3$. (b) Trace the curve y = (x - 1) (x - 2) (x - 3).

5 (a) Evaluate:
$$\int_0^1 \int_x^{\sqrt{x}} (x^2 + y^2) dx \, dy$$
.

(b) Evaluate the integral by changing the order of integration: $\int_0^1 \int_x^{\sqrt{2-x^2}} \frac{x \, dy \, dx}{\sqrt{x^2+y^2}}$.

- 6 (a) Find the Laplace transform of $\left\{ \left(\sqrt{t} \frac{1}{\sqrt{t}}\right)^3 \right\}$.
 - (b) Find: $L^{-1}\left\{\frac{1}{2}\log\left(\frac{s^2+b^2}{s^2+a^2}\right)\right\}$.
- 7 (a) Solve the D.E. $y'' + 2y' + 5y = 8 \sin t + 4 \cos t$, y(0) = 1, $y(\frac{\pi}{4}) = \sqrt{2}$. Using Laplace transform.
 - (b) Using Laplace transform, evaluate $\int_0^{\infty} e^{-4t} \sin^3 t \, dt$.
- 8 (a) Use divergence theorem to evaluate $\int_{s} \overline{F} \cdot \overline{N} ds$, where $\overline{F} = x^{3}i + y^{3}j + z^{3}k$, and S is the surface of the sphere $x^{2} + y^{2} + z^{2} = a^{2}$.
 - (b) Evaluate: $\nabla \left[\nabla \cdot \left(\frac{\overline{R}}{r} \right) \right]$, where $\overline{R} = xi + yj + zk$, $r = |\overline{r}|$.

Code: 9ABS104

B.Tech I Year (R09) Regular & Supplementary Examinations, June 2013 **MATHEMATICS - I**

(Common to all branches)

Time: 3 hours

Max. Marks: 70

Answer any FIVE questions All questions carry equal marks *****

- 1 (a) Solve : $\sec^2 y \frac{dy}{dt} + 2x \tan y = x^3$.
 - (b) Solve: $2y \cos y^2 \frac{dy}{dx} \frac{2}{x+1} \sin y^2 = (x+1)^3$.
- 2 (a) Solve : $(D^2 1)y = 2e^x + 3x$. (b) Solve : $(D^2 + 1)y = \csc x$.
- (a) Find the shortest and the longest distance from the point (1, 2, -1) to the sphere $x^2 + y^2 + y^2$ 3 $z^2 = 24$.
 - (b) Find the volume of the largest rectangular parallelopiped that can be inscribed in the ellipsoid $4x^2 + 4y^2 + 9z^2 = 36$.
- (b) Trace the curve $r = a(1 + \cos \theta)$. (c) Trace the curve $r = a + b \cos \theta$, a > b. 4 (a) Trace the curve $r = a(1 + \cos \theta)$.
- 5 (a) Evaluate: $\int_0^5 \int_0^{x^2} x(x^2 + y^2) dx dy$.
 - (b) Evaluate the integral by changing the order of integration: $\int_0^a \int_{x/a}^{\sqrt{x/a}} (x^2 + y^2) dx dy$.
- (a) Find the Laplace transform of: (i) $\left\{\frac{\sin^2 t}{t}\right\}$. (ii) $\left\{\frac{1-\cos at}{t}\right\}$ 6 (b) Find: $L^{-1}\left\{\frac{s}{(s^2+a^2)^2}\right\}$ using convolution theorem.
- 7 (a) Solve the D.E. $y'' + 4y' + 4y = 4e^{-2t}$, y(0) = -1, y'(0) = 4. Using Laplace transform.
 - (b) Solve the D.E $\frac{dy}{dt} + 2y + \int_0^t y dt = 2\cos t$, y(0) = 1. Using Laplace transform.
- 8 (a) If \overline{A} is a constant vector and $\overline{R} = x\overline{i} + y\overline{j} + z\overline{k}$, prove that $\nabla \times \left(\frac{\overline{A} \times \overline{r}}{r^n}\right) = \frac{(2-n)\overline{A}}{r^n} + \frac{n(\overline{r} \cdot \overline{A})\overline{r}}{r^{n+2}}$.
 - (b) If $\overline{F} = (5xy 6x^2)\mathbf{i} + (2y 4x)\mathbf{j}$, evaluate $\int_c \overline{F} \cdot d\overline{R}$, where C is the curve in the xy-plane $y = x^3$ from (1, 1) to (2, 8).

www.FirstRanker.com

www.FirstRanker.com

Code: 9ABS104

B.Tech I Year (R09) Regular & Supplementary Examinations, June 2013 MATHEMATICS - I

(Common to all branches)

Time: 3 hours

Max. Marks: 70

3

Answer any FIVE questions All questions carry equal marks

- 1 (a) Solve : $x \frac{dy}{dx} + y = x^3 y^6$.
 - (b) Solve : $\frac{dy}{dx} + \frac{y}{x} = y^2 x \sin x$.
- 2 (a) Solve : $(D^2 3D + 2)y = \cos hx$.
 - (b) Solve : $(D + 2) (D 1)^2 4 = e^{-2x} + 2 \sin hx$.
- 3 (a) Prove that the maximum value of $x^m y^n z^p$ under the condition x + y + z = a is $m^m n^n p^p a^{m+n+p} / (m + n + p)^{m+n+p}$.
 - (b) Find the maximum and minimum distance from the origin to the curve $5x^2 + 6xy + 5y^2 8 = 0$.
- 4 (a) Trace the curve $x = a(\theta + \sin\theta)$, $y = a(1 + \cos\theta)$. (b) Trace the curve $x = a(\theta - \sin\theta)$, $y = a(1 - \cos\theta)$.
- 5 (a) Evaluate: $\int_{0}^{2} \int_{0}^{x} e^{x+y} dy dx$.
 - (b) Change the order of integration in $\int_0^a \int_y^a \frac{x \, dx \, dy}{x^2 + y^2}$ and hence evaluate the same.
- 6 (a) Find the Laplace transform of $\left\{e^{-4t}\int_0^t \frac{\sin 3t}{t}dt\right\}$.
 - (b) Find $L^{-1}\left\{\frac{1}{(s^2+a^2)^2}\right\}$. Using convolution theorem.
- 7 (a) Solve the D.E. y'' + 2y' + y = t, y(0) = -3, y(1) = -1. Using Laplace transform.
 - (b) Solve the integral equation $y(t) = t^2 + \int_0^t y(u) \sin(t-u) du$, using Laplace transform.
- 8 (a) Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 3$ at the point (2,-1, 2).
 - (b) Apply Greens theorem to evaluate $\int_C [(2x^2 y^2) dx + (x^2 + y^2) dy]$, where C is the boundary of the area enclosed by the x-axis and upper half of the circle $x^2 + y^2 = a^2$.

www.FirstRanker.com

Code: 9ABS104

B.Tech I Year (R09) Regular & Supplementary Examinations, June 2013 MATHEMATICS - I

(Common to all branches)

Time: 3 hours

Max. Marks: 70

Answer any FIVE questions All questions carry equal marks

1 (a) Solve : $\frac{dy}{dx} + yx = y^2 e^{x^2/2} \sin x$.

(b) Solve:
$$x\frac{dy}{dx} + y = y^2 x^3 \cos x$$
.

- 2 (a) Solve : $(D^2 5D + 6) y = xe^{4x}$. (b) Solve : $(D^2 + a^2) y = Sec ax$.
- 3 (a) Find a point on the plane 3x + 2y + z 12 = 0, which is nearest to the origin.
 - (b) Prove that it the perimeter of triangle is constant there its area is maximum when the triangle is equilateral.
- 4 (a) Prove that the volume of revolution of $r^2 = a^2 \cos 2\theta$ about the initial line is $\frac{\pi a^3}{6\sqrt{2}} \left[3\log(\sqrt{2}+1) \sqrt{2} \right].$
 - (b) Determine the volume of the solid generated by revolving the lemicon $r = a + b \cos\theta$ (a > b) about the initial line.
- 5 (a) Evaluate: $\int_0^1 \int_y^1 \frac{dx \, dy}{\sqrt{(1-x^2)(1-y^2)}}$.
 - (b) Change the order of integration in $\int_0^1 \int_0^{\sqrt{1-x^2}} y^2 dy dx$ and evaluate.
- 6 (a) Find the Laplace transform of $\left\{2^t + \frac{\cos 2t \cos 3t}{t} + t \sin t\right\}$.
 - (b) Apply convolution theorem to find $L^{-1}\left\{\frac{s}{(s^2+a^2)^2}\right\}$.
- 7 (a) Solve the D.E. y'' + 9y = cos2t, y(0) = 1, $y(\frac{\pi}{2}) = -1$. Using Laplace transform.
 - (b) Solve the integral equation $y(t) = 1 + \int_0^t y(u) \sin(t-u) du$, using Laplace transform.
- 8 (a) A vector field is given by $\vec{A} = (x^2 + xy^2)\vec{i} + (y^2 + x^2y)\vec{j}$. Show that the field is irrotational and find the scalar potential.
 - (b) Use the divergence theorem to show that $\int_{S} \nabla r^{2} d\overline{S} = 6V$, where S is any closed surface enclosing a volume V and $\overline{r} = xi + yj + zk$.