B.Tech I Year (R09) Regular \& Supplementary Examinations, June 2013 MATHEMATICAL METHODS (Common to EEE, ECE, CSE, EIE, E.Con.E, ECM, IT \& CSS)
Time: 3 hours
Max. Marks: 70
Answer any FIVE questions
All questions carry equal marks
1 (a) Reduce the $\left[\begin{array}{cccc}1 & -2 & 1 & 2 \\ 2 & -2 & 0 & 6 \\ 4 & 2 & 0 & 2 \\ 1 & -1 & 0 & 3\end{array}\right]$ matrix into the normal form and hence find its rank.
(b) Test the system of equations $2 x+y+5 z=4$; $3 x-2 y+2 z=2$; $5 x-8 y-4 z=1$ consistency. If consistent solve them.

2 Diagonalize the following matrix by an orthogonal transformation and also find the matrix of transformation. $\left[\begin{array}{ccc}2 & 1 & -1 \\ 1 & 1 & -2 \\ -1 & -2 & 1\end{array}\right]$

3 (a) Using the Newton - Raphson method find the root of the equation $f(x)=e^{x}-3 x$ that lies between 0 and 1 .
(b) State appropriate interpolation formula which is to be used to calculate the value of $\exp$ (1.75) from the following data and hence evaluate it from the given data.

| $x$ | 1.7 | 1.8 | 1.9 | 2.0 |
| :---: | :---: | :---: | :---: | :---: |
| $y=e^{x}$ | 5.474 | 6.050 | 6.686 | 7.389 |

4 Determine the constants a and b by the method of least squares such that $\mathrm{y}=\mathrm{ae}^{\mathrm{bx}}$.

| $\mathrm{x}:$ | 2 | 4 | 6 | 8 | 10 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{y}:$ | 4.077 | 11.084 | 30.128 | 81.897 | 222.62 |

5 Given $\frac{d y}{d x}-\sqrt{x y}=2, y(1)=1$ find the value of $y(2)$ in steps of 0.2 using modified Euler's method.

6 (a) Obtain the Fourier series for the function $f(x)$ is given by $f(x)=\left\{\begin{array}{ll}0 \\ \sin x, & -\pi<x<0<\pi\end{array}\right.$. Deduce that $\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{5.7}-\frac{1}{7.9} \ldots=\frac{1}{4}(\pi-2)$.
(b) Find the Fourier cosine transform of $f(x)=e^{-a x} \cos a x, a>0$.

7 Solve $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$, which satisfies the conditions $u(0, y)=0, u(L, y)=0, u(x, 0)=0$ and $u(x, a)=f(x)$.

8 (a) Find $Z\left\{\cos \left(\frac{n \pi}{2}\right)\right\}$ and $Z\left\{\sin \left(\frac{n \pi}{2}\right)\right\}$.
(b) State and prove convolution theorem for Z-transform.

Code: 9ABS105

# B.Tech I Year (R09) Regular \& Supplementary Examinations, June 2013 MATHEMATICAL METHODS 

 (Common to EEE, ECE, CSE, EIE, E.Con.E, ECM, IT \& CSS)Time: 3 hours
Max. Marks: 70

## Answer any FIVE questions <br> All questions carry equal marks <br> *****

1 (a) Reduce the $\left[\begin{array}{cccc}1 & 0 & -3 & 2 \\ 0 & 1 & 4 & 5 \\ 1 & 3 & 2 & 0 \\ 1 & 1 & -2 & 0\end{array}\right]$ matrix, to normal form and find its rank.
(b) Solve the system $2 x-y+4 z=12 ; 3 x+2 y+z=10 ; x+y+z=6$; if it is consistent.

2
Diagonalize the following matrix by an orthogonal transformation and also find the matrix of transformation. $\left[\begin{array}{ccc}7 & 0 & -2 \\ 0 & 5 & -2 \\ -2 & -2 & 6\end{array}\right]$

3 (a) Evaluate $\sqrt{28}$ to four decimal places by Newton's iterative method.
(b) Using Newton's forward interpolation formula, and the given table of values.

| $x$ | 1.1 | 1.3 | 1.5 | 1.7 | 1.9 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $f(x)$ | 0.21 | 0.69 | 1.25 | 1.89 | 2.61 |

Obtain the value of $f(\mathrm{x})$ when $\mathrm{x}=1.4$.
4 Find the curve of best fit of the type $y=a e^{b x}$ to the following data by the method of least squares.

| $\mathrm{x}:$ | 1 | 5 | 7 | 9 | 12 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{y}:$ | 10 | 15 | 12 | 15 | 21 |

5 Determine $y(0.8)$ and $y(1.0)$ by Milne's predictor-corrector method when $\frac{d y}{d x}=x-y^{2}, y(0)=0$.
6 (a) Obtain a half-range cosine series for $f(x)$ is given by $f(x)=\left\{\begin{array}{ll}k x, & 0 \leq x \leq \frac{L}{2} \text {, } \\ k(L-x), \frac{L}{2} \leq x \leq L .\end{array}\right.$ Deduce that $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\cdots=\frac{\pi^{2}}{8}$.
(b) Prove that Fourier cosine and sine transforms are linear.

7 Solve $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$ which satisfies the conditions $u(0, y)=0, u(L, y)=0, u(x, 0)=0$ and $u(x, a)=\sin \left(\frac{n \pi x}{L}\right)$.

8 (a) Prove that $Z\left(n^{p}\right)=-z \frac{d}{d z} Z\left(n^{p-1}\right), p$ being a + ve integer. Hence evaluate $Z(n)$ and $Z\left(n^{2}\right)$.
(b) Find: $Z^{-1}\left\{\frac{2 z}{(z-1)\left(z^{2}+1\right)}\right\}$.
B.Tech I Year (R09) Regular \& Supplementary Examinations, June 2013

## MATHEMATICAL METHODS

(Common to EEE, ECE, CSE, EIE, E.Con.E, ECM, IT \& CSS)
Time: 3 hours
Max. Marks: 70
Answer any FIVE questions
All questions carry equal marks
1 (a) Determine the rank of the matrix $A=\left[\begin{array}{cccc}2 & 1 & 3 & 5 \\ 4 & 2 & 1 & 3 \\ 8 & 4 & 7 & 13 \\ 8 & 4 & -3 & -1\end{array}\right]$
(b) Test the following system for consistency and if consistent solve it.
$u+2 v+2 w=1,2 u+v+w=2,3 u+2 v+2 w=3, v+w=0$.
2 Diagonalize the following matrix by an orthogonal transformation and also find the matrix of transformation. $\left[\begin{array}{ccc}0 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & -1 & 0\end{array}\right]$

3 (a) Find the root between 0 and 1 of the equation $x^{3}-6 x+4=0$ correct to five decimal places.
(b) Find the values of cos 1.747 using the values given in the table below:

| $\mathrm{x}:$ | 1.70 | 1.74 | 1.78 | 1.82 | 1.86 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\sin \mathrm{x}:$ | 0.9916 | 0.9857 | 0.9781 | 0.9691 | 0.9584 |

4 Obtain a relation of the form $y=a e^{b x}$ for the following data by the method of least squares.

| $\mathrm{x}:$ | 2 | 3 | 4 | 5 | 6 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{y}:$ | 8.3 | 15.4 | 33.1 | 65.2 | 127.4 |

5
Find $y(0.8)$ by Milne's method for $\frac{d y}{d x}=y-x^{2}, y(0)=1$. Obtaining the starting values by Taylor's series method.

6 (a) Obtain the Fourier series for the function $f(x)$ is given by $f(x)=\left\{\begin{array}{ll}x & , 0 \leq x \leq \pi, \\ 2 \pi-x, & \pi \leq x \leq 2 \pi \text {. }\end{array}\right.$ and Deduce that $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\cdots=\frac{\pi^{2}}{8}$.
(b) Find the Fourier transform of $f(x)=e^{-\frac{x^{2}}{2}},-\infty<x<\infty$.

7
Solve $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$ within the rectangle $0 \leq x \leq \mathrm{a}, 0 \leq y \leq \mathrm{b}$, given that $u(0, y)=u(0, y)=$ $u(0, y)=0$ and $u(0, y)=x(a-x)$.

8 (a) Find $Z\left\{(\cos \theta+i \sin \theta)^{n}\right\}$. Hence evaluate $Z(\cos n \theta)$ and $Z(\sin n \theta)$.
(b) Find $Z^{-1}\left\{\frac{3 z^{2}+z}{(5 z-1)(5 z+2)}\right\}$.

Code: 9ABS105

## 4

B.Tech I Year (R09) Regular \& Supplementary Examinations, June 2013
(Common to EEE, ECE, CSE, EIE, E.Con.E, ECM, IT \& CSS)
Time: 3 hours
Max. Marks: 70
Answer any FIVE questions

## All questions carry equal marks

1 (a) Reduce the matrix $\mathrm{A}=\left[\begin{array}{cccc}1 & 2 & 1 & 0 \\ -2 & 4 & 3 & 0 \\ 1 & 0 & 2 & -8\end{array}\right]$ to canonical form (normal) and hence find its rank.
(b) Solve the system of homogeneous equations given by $2 x+y+2 z=0, x+y+3 z=0$, $4 x+3 y+8 z=0$.

2 Diagonalize the following matrix by an orthogonal transformation and also find the matrix of transformation. $\left[\begin{array}{lll}1 & 2 & 0 \\ 2 & 2 & 2 \\ 0 & 2 & 3\end{array}\right]$

3 (a) Find the root for the following equation using bisection method correct to two decimal places: $\mathrm{e}^{\mathrm{x}}-\mathrm{x}+2=0$ in $1,1.4$
(b) Find $f(2.5)$ using the following table:

| $x$ | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| $f(x)$ | 1 | 8 | 27 | 64 |

4
Fit the curve $y=a e^{b x}$ for the following data.

| $\mathrm{x}:$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{y}:$ | 20 | 30 | 52 | 77 | 135 | 211 | 326 | 550 | 1052 |

Using Runge-Kutta method of $4^{\text {th }}$ order ,find the solution of $\frac{d y}{d x}=x^{2}+0.25 y^{2}, y(0)=-1$ on $[0,0.5]$ with $h=0.1$.

6 (a) Express $f(x)=x$ as a half-range sine series in the interval $0<x<2$.
(b) Find the Fourier cosine transform of $f(x)=\left\{\begin{array}{lr}x & \text {, for } 0<x<1 \\ 2-x, & \text { for } 1<x<2 \\ 0 \quad \text {, for } x>2\end{array}\right.$

7 Solve $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$ for $0 \leq x \leq \pi, 0 \leq y \leq \pi$ which satisfies the conditions $u(0, y)=0, u(\pi, y)=$ $0, u(x, \pi)=0$ and $u(x, a)=\sin ^{2} x$.

8 (a) If $Z\left(u_{n}\right)=\bar{u}(z)$ prove that $Z\left(a^{n} u_{n}\right)=\bar{u}\left(\frac{z}{a}\right)$.
(b) Using Z- transform, solve $4 u_{n}-u_{n+2}=0$, given that $u_{0}=0, u_{1}=2$.

