

Code: 9ABS105	1
B.Tech I Year (R09) Regular & Supplementary Exam MATHEMATICAL METHODS	ninations, June 2013
(Common to EEE, ECE, CSE, EIE, E.Con.E, EC	M, IT & CSS)
Time: 3 hours	Max. Marks: 70
Answer any FIVE questions	
All questions carry equal marks	
1 (a) Reduce the $\begin{bmatrix} 1 & -2 & 1 & 2 \\ 2 & -2 & 0 & 6 \\ 4 & 2 & 0 & 2 \\ 1 & -1 & 0 & 3 \end{bmatrix}$ matrix into the normal form a	and hence find its rank.

- (b) Test the system of equations 2x + y + 5z = 4; 3x 2y + 2z = 2; 5x 8y 4z = 1consistency. If consistent solve them.
- 2 Diagonalize the following matrix by an orthogonal transformation and also find the matrix of transformation. $\begin{bmatrix} 2 & 1 & -1 \\ 1 & 1 & -2 \\ -1 & -2 & 1 \end{bmatrix}$
- Using the Newton Raphson method find the root of the equation $f(x) = e^{x} 3x$ that lies 3 (a) between 0 and 1.
 - State appropriate interpolation formula which is to be used to calculate the value of exp (b) (1.75) from the following data and hence evaluate it from the given data.

				•	
х	1.7	1.8	1.9	2.0	
$y = e^{x}$	5.474	6.050	6.686	7.389	

4

Determine the constants a and	b by the method of leas	st squares such that $y = ae^{bx}$.
-------------------------------	-------------------------	--------------------------------------

X:	2	4	6	8	10	
y :	4.077	11.084	30.128	81.897	222.62	

Given $\frac{dy}{dx} - \sqrt{xy} = 2$, y(1) = 1 find the value of y(2) in steps of 0.2 using modified Euler's 5 method.

- (a) Obtain the Fourier series for the function f(x) is given by $f(x) = \begin{cases} 0, & -\pi < x < 0, \\ \sin x, & 0 < x < \pi. \end{cases}$ Deduce 6 that $\frac{1}{1.3} - \frac{1}{3.5} + \frac{1}{5.7} - \frac{1}{7.9} \dots = \frac{1}{4} (\pi - 2)$.
 - (b) Find the Fourier cosine transform of $f(x) = e^{-ax} \cos ax$, a > 0.

Solve $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$, which satisfies the conditions u(0, y) = 0, u(L, y) = 0, u(x, 0) = 0 and 7 u(x,a) = f(x).

(a) Find $Z\left\{\cos\left(\frac{n\pi}{2}\right)\right\}$ and $Z\left\{\sin\left(\frac{n\pi}{2}\right)\right\}$. 8 State and prove convolution theorem for Z-transform. (b)

www.FirstRanker.com

Code: 9ABS105	2						
B.Tech I Year (R09) Regular & Supplementary Examinations, June 2013 MATHEMATICAL METHODS (Common to EEE, ECE, CSE, EIE, E.Con.E, ECM, IT & CSS) Time: 3 hours Max. Marks: 70							
Answer any FIVE questions All questions carry equal marks							
1 (a) Reduce the $\begin{bmatrix} 1 & 0 & -3 & 2 \\ 0 & 1 & 4 & 5 \\ 1 & 3 & 2 & 0 \\ 1 & 1 & -2 & 0 \end{bmatrix}$ matrix, to normal form and find its rank. (b) Solve the system 2x - y + 4z = 12; 3x + 2y + z = 10; x + y + z = 6; if it is consistent.							
Diagonalize the following matrix by an orthogonal transformation and also find the transformation. $\begin{bmatrix} 7 & 0 & -2 \\ 0 & 5 & -2 \\ -2 & -2 & 6 \end{bmatrix}$	matrix of						
3 (a) Evaluate $\sqrt{28}$ to four decimal places by Newton's iterative method. (b) Using Newton's forward interpolation formula, and the given table of values. $ \frac{x 1.1 1.3 1.5 1.7 1.9}{f(x) 0.21 0.69 1.25 1.89 2.61} $ Obtain the value of $f(x)$ when $x = 1.4$.							
Find the curve of best fit of the type $y = ae^{bx}$ to the following data by the methors quares.	d of least						
5 Determine $y(0.8)$ and $y(1.0)$ by Milne's predictor-corrector method when $\frac{dy}{dx} = x - y^2$,	y(0)=0.						
6 (a) Obtain a half-range cosine series for $f(x)$ is given by $f(x) = \begin{cases} kx & , 0 \le x \le \frac{\pi}{2} \\ k(L-x), \frac{L}{2} \le x \le L \end{cases}$	² Deduce						
(b) Prove that Fourier cosine and sine transforms are linear.							
7 Solve $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ which satisfies the conditions $u(0, y) = 0$, $u(L, y) = 0$, $u(x, 0)$ $u(x, a) = \sin\left(\frac{n\pi x}{L}\right)$.	0) = 0 and						
8 (a) Prove that $Z(n^p) = -z \frac{d}{dz} Z(n^{p-1})$, <i>p</i> being a +ve integer. Hence evaluate $Z(n)$ and $Z(p)$ (b) Find: $Z^{-1}\left\{\frac{2z}{(z-1)(z^2+1)}\right\}$.	Z(n ²).						

www.FirstRanker.com

Code: 9ABS105

B.Tech I Year (R09) Regular & Supplementary Examinations, June 2013 MATHEMATICAL METHODS

(Common to EEE, ECE, CSE, EIE, E.Con.E, ECM, IT & CSS)

Time: 3 hours

Max. Marks: 70

3

Answer any FIVE questions

All questions carry equal marks

- 1 (a) Determine the rank of the matrix $A = \begin{bmatrix} 2 & 1 & 3 & 5 \\ 4 & 2 & 1 & 3 \\ 8 & 4 & 7 & 13 \\ 8 & 4 & -3 & -1 \end{bmatrix}$
 - (b) Test the following system for consistency and if consistent solve it. u + 2v + 2w = 1, 2u + v + w = 2, 3u + 2v + 2w = 3, v + w = 0.
- 2 Diagonalize the following matrix by an orthogonal transformation and also find the matrix of transformation. $\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{bmatrix}$
- 3 (a) Find the root between 0 and 1 of the equation x³ 6x + 4 = 0 correct to five decimal places.
 (b) Find the values of cos 1.747 using the values given in the table below:
 - x:
 1.70
 1.74
 1.78
 1.82
 1.86

 sin x:
 0.9916
 0.9857
 0.9781
 0.9691
 0.9584
- 4 Obtain a relation of the form $y = ae^{bx}$ for the following data by the method of least squares.

x:	2	3	54	5	6
y :	8.3	15.4	33.1	65.2	127.4

- 5 Find y(0.8) by Milne's method for $\frac{dy}{dx} = y x^2$, y(0) = 1. Obtaining the starting values by Taylor's series method.
- 6 (a) Obtain the Fourier series for the function f(x) is given by $f(x) = \begin{cases} x & , \ 0 \le x \le \pi, \\ 2\pi x, \ \pi \le x \le 2\pi. \end{cases}$ and Deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots = \frac{\pi^2}{8}$.
 - (b) Find the Fourier transform of $f(x) = e^{-\frac{x^2}{2}}, -\infty < x < \infty$.
- 7 Solve $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ within the rectangle $0 \le x \le a$, $0 \le y \le b$, given that u(0, y) = u(0, y)
- 8 (a) Find $Z\{(\cos \theta + i \sin \theta)^n\}$. Hence evaluate $Z(\cos n\theta)$ and $Z(\sin n\theta)$.
 - (b) Find $Z^{-1}\left\{\frac{3z^2+z}{(5z-1)(5z+2)}\right\}$.

www.FirstRanker.com

Code: 9ABS105

4

B.Tech I Year (R09) Regular & Supplementary Examinations, June 2013 MATHEMATICAL METHODS

(Common to EEE, ECE, CSE, EIE, E.Con.E, ECM, IT & CSS)

Time: 3 hours

Max. Marks: 70

Answer any FIVE questions

All questions carry equal marks

- 1 (a) Reduce the matrix $A = \begin{bmatrix} 1 & 2 & 1 & 0 \\ -2 & 4 & 3 & 0 \\ 1 & 0 & 2 & -8 \end{bmatrix}$ to canonical form (normal) and hence find its rank.
 - (b) Solve the system of homogeneous equations given by 2x + y + 2z = 0, x + y + 3z = 0, 4x + 3y + 8z = 0.
- 2 Diagonalize the following matrix by an orthogonal transformation and also find the matrix of transformation. $\begin{bmatrix} 1 & 2 & 0 \\ 2 & 2 & 2 \\ 0 & 2 & 3 \end{bmatrix}$
- 3 (a) Find the root for the following equation using bisection method correct to two decimal places: $e^x x + 2 = 0$ in 1, 1.4
 - (b) Find f(2.5) using the following table:

Х	1	2	3	64
f(x)	1	8	27	64

4 Fit the curve $y = ae^{bx}$ for the following data.

x:	0	1	2	3	4	5	6	7	8
y :	20	30	52	77	135	211	326	550	1052

- 5 Using Runge-Kutta method of 4th order ,find the solution of $\frac{dy}{dx} = x^2 + 0.25y^2$, y(0) = -1 on[0,0.5] with h = 0.1.
- 6 (a) Express f(x) = x as a half-range sine series in the interval 0 < x < 2.
 - (b) Find the Fourier cosine transform of $f(x) = \begin{cases} x & , for \ 0 < x < 1 \\ 2 x, for \ 1 < x < 2 \\ 0 & , for \ x > 2 \end{cases}$
- 7 Solve $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ for $0 \le x \le \pi$, $0 \le y \le \pi$ which satisfies the conditions u(0, y) = 0, $u(\pi, y) = 0$, $u(x, \pi) = 0$ and $u(x, a) = \sin^2 x$.

8 (a) If
$$Z(u_n) = \overline{u}(z)$$
 prove that $Z(a^n u_n) = \overline{u}\left(\frac{z}{a}\right)$.

(b) Using Z- transform, solve $4u_n - u_{n+2} = 0$, given that $u_0 = 0$, $u_1 = 2$.

www.FirstRanker.com