Code: R7100204

B.Tech I Year (R07) Supplementary Examinations, June 2013
 MATHEMATICAL METHODS

(Common to EEE, ECE, ME, CSE, EIE, IT, E.Con.E, ECC and CSS)
Time: 3 hours
Max Marks: 80
Answer any FIVE questions
All questions carry equal marks

1 (a) Find the rank of:

$$
A=\left[\begin{array}{cccc}
-2 & -1 & -3 & -1 \\
1 & 2 & 3 & -1 \\
1 & 0 & 1 & 1 \\
0 & 1 & 1 & -1
\end{array}\right] \text { by reducing into Echlon form. }
$$

(b) Solve the system of equations:

$$
\begin{aligned}
& x+3 y-2 z=0 \\
& 2 x-y+4 z=0 \\
& x-11 y+14 z=0
\end{aligned}
$$

2 (a) Prove that Eigen values of Hermitian matrix are real.
(b) Find the Eigen values and Eigen vectors of matrix:

$$
A=\left[\begin{array}{ccc}
3 & -1 & 1 \\
-1 & 5 & -1 \\
1 & -1 & 3
\end{array}\right]
$$

3 Reduce the quadratic form $6 x^{2}+3 y^{2}+3 z^{2}-4 x y-2 y z+4 z x$. To canonical form by orthogonal transformation. And hence find its rank, index and signature.

4 (a) Find a real roof of $x e^{x}=2$ using Regula Falsi method.
(b) Use Lagrange's interpolation formula, find the value of $f(3)$ from the following table.

$x:$	0	1	2	4	5	6
$f(x):$	1	14	15	5	6	19

5 (a) Fit a parabola of the form, $y=a+b x+c x^{2}$ to the following data:

x	1	2	3	4	5	6	7
y	23	5.2	9.7	16.5	29.4	35.5	54.4

(b) The population of a certain town is shown in the following table. Find the rate of growth of the population in 1981:

year (x)	1951	1961	1971	1981	1991
population (y)	40.62	60.80	79.95	103.56	132.65

Contd. in Page 2
Page 1 of 2

Code: R7100204

6 Using $R-k$ method, find $y(0.2), y(0.4)$ for the equation $\frac{d y}{d x}=\frac{y^{2}-x^{2}}{y^{2}+x^{2}} 1 y(0)=1$ taking $h=0.1$.

7 (a) Find the Fourier series for the function:
$f(x)=\left\{\begin{array}{c}x, 0<x<1 \\ 1-x, 1<x<2\end{array}\right.$ and hence deduce that $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+----\frac{\pi^{2}}{8}$.
(b) Find the Fourier cosine transform of $\frac{1}{1+x^{2}}$.

8 (a) Solve $\left(x^{2}-y z\right) p+\left(y^{2}-2 x\right) q=z^{2}-x y$.
(b) Solve $u_{n+2}+3 u_{n+1}+2 u_{n}=0, u_{0}=0, u_{1}=1$.

