Code: R7100406
B.Tech I Year (R07) Supplementary Examinations, June 2013

NETWORK ANALYSIS
(Common to ECE, EIE, E.Con.E and ECC)

Time: 3 hours
Answer any FIVE questions
All questions carry equal marks

1 (a) Explain active elements in detail.
(b) A pure inductance of 3 mH carries a current of the wave form shown in figure. Sketch the waveform of $\mathrm{V}(\mathrm{t})$ and $\mathrm{P}(\mathrm{t})$. Determine the average value of power.

2 (a) Define and explain self - inductance and mutual - inductance.
(b) Two coupled coils of $\mathrm{L}_{1}=0.8 \mathrm{H}$ and $\mathrm{L}_{2}=0.2 \mathrm{H}$ have a coupling coefficient $\mathrm{k}=0.9$. Find the mutual inductance M . Derive the expression used.

3 (a) Show that the resonant frequency ω_{0} of an RLC series circuit is the geometric mean of ω_{1} and ω_{2}, the lower and upper half power frequencies respectively.
(b) Given a series RLC circuit with $\mathrm{R}=10$ ohms, $\mathrm{L}=1 \mathrm{mH}$ and $\mathrm{C}=1 \mu \mathrm{~F}$ is connected across a sinusoidal source of 20 V with variable frequency. Find:
(i) The resonant frequency. (ii) Q factor of the circuit at resonant frequency. (iii) Half power frequencies.

4

For the above network, draw (i) Graph. (ii) Tree. (iii) Dual network and also write down the procedure to draw dual network.

Code: R7100406

5 (a) State and explain Tellegens theorem.
(b) When the load impedance R draws the maximum power? Find the maximum power delivered to the load by using maximum power transfer theorem for the given network.

6 (a) Derive the relation between Z and ABCD parameters in a two port network.
(b) Define and explain h-parameters of a two port network.

7 A $50 \mathrm{~Hz}, 400 \mathrm{~V}$ (peak value) sinusoidal voltage is applied at $\mathrm{t}=0$ to a series RL circuit having resistance 5 ohms and inductance 0.2 H . Obtain an expression for current at any Instant 't', Calculate the value of transient current 0.01 sec after switching ON.

8 (a) Write short notes on m-derived low pass filter
(b) Design m-derived low pass filter having a cut of frequency of 1 KHz , resonant frequency of 1200 Hz and design impedance of 500 ohms.

