www.FirstRanker.com
B.Tech I Year I Semester (R15) Regular \& Supplementary Examinations November/December 2018

MATHEMATICS - I

(Common to all Branches)
Time: 3 hours
Max. Marks: 70
PART - A
(Compulsory Question)

1 Answer the following: ($10 \times 02=20$ Marks $)$
(a) Solve $\left(5 x^{4}+3 x^{2} y^{2}-2 x y^{3}\right) d x+\left(2 x^{3} y-3 x^{2} y^{2}-5 y^{4}\right) d y=0$.
(b) Solve $x \log x \frac{d y}{d x}+y=2 \log x$.
(c) Find the particular integral of $\left(D^{2}-2 D+1\right) y=x e^{x} \sin x$.
(d) Solve $\left(x^{2} D^{2}+x D\right) y=0$.
(e) Find the radius of curvature for the curve $y=e^{x}$ at the point where it crosses the y-axis.
(f) If $u=\frac{2 x-y}{2}, v=\frac{y}{2}$, find $\frac{\partial(u, v)}{\partial(x, y)}$.
(g) Evaluate $\int_{0}^{1} \int_{x}^{1}\left(x^{2}+y^{2}\right) d y d x$.
(h) Find the area of a circle of radius ' a ' by double integration in polar-co-ordinates.
(i) Find the directional derivative of $f=x y z$ at $(1,1,1)$ in the direction of $\vec{i}+\vec{j}+\vec{k}$.
(j) Find the valve of 'a' so that the vector $\vec{F}=(x+3 y) \vec{i}+(y-2 z) \vec{j}+(x+a z) \vec{k}$ is solenoidal.

PART - B
(Answer all five units, $5 \times 10=50$ Marks)

UNIT - I

2 (a) Solve $\frac{d y}{d x}+x \sin 2 y=x^{3} \cos ^{2} y$.
(b) Solve $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+5 y=e^{2 x} \sin x$.

OR

3 (a) Find the orthogonal trajectory of the cardioids $R=a(1-\cos \theta)$.
(b) Solve $\left(D^{2}-2 D+1\right) y=x^{2} e^{3 x}$.

UNIT - II

4
Solve $\frac{d^{2} y}{d x^{2}}+4 y=4 \tan 2 x$ using method of variation of parameters.
OR
Solve $(2 x+5)^{2} \frac{d^{2} y}{d x^{2}}-6(2 x+5) \frac{d y}{d x}+8 y=6 x$.

UNIT - III

6 (a) Expand $\tan ^{-1}\left(\frac{y}{x}\right)$ in the neighborhood of $(1,1)$.
(b) Examine $f(x, y)=x^{3}+y^{3}-3 x y$ for maximum and minimum values.
OR
(a) If $y_{1}=\frac{x_{2} x_{3}}{x_{1}}, y_{2}=\frac{x_{3} x_{1}}{x_{2}}, y_{3}=\frac{x_{1} x_{2}}{x_{3}}$, find $\frac{\partial\left(y_{1}, y_{2}, y_{3}\right)}{\partial\left(x_{1}, x_{2} x_{3}\right)}$.
(b) Find the dimensions of the rectangular box without a top of maximum capacity, whose surface is 108 sq.cm

UNIT - IV

8 (a) Evaluate $\iint_{R}\left(x^{2}+y^{2}\right) d x d y$ where R is the region in the positive quadrant for which $x+y \leq 1$.
(b) Evaluate $\int_{0}^{\alpha} \int_{x}^{\alpha} \frac{e^{-y}}{y} d y d x$ by changing the order of integration.

OR

9 (a) Find the area bounded between the curves $y^{2}=4 a x$ and $x^{2}=4 a y$.
(b) Evaluate $\iint_{D} \int x y z d x d y d z$, where D is the region bounded by the positive octant of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$.

UNIT - V

10 (a) Evaluate $\int_{C} \vec{F} \cdot \overrightarrow{d r}$ where $\vec{F}=3 x^{2} \vec{i}+(2 x z-y) \vec{j}+z \vec{k}$ and C is the straight line from $\mathrm{A}(0,0,0)$ to $\mathrm{B}(2,1,3)$.
(b) Using Stoke's theorem, evaluate $\int_{c} \vec{F} \cdot \overrightarrow{d r}$ for the function $\vec{F}=\left(x^{2}-y^{2}\right) \vec{i}_{i}+x y_{j}$ in the rectangular region in the XOY-Plane bounded by the lines $x=0, x=a, y=0$ and $y=b$.

OR
Verify the Gauss divergence theorem for $\vec{F}=4 x z_{i}-y^{2} \vec{j}+y z_{k}$ over the cube bounded by $=0$, $x=1, y=0, y=1, z=0, z=1$.

