

www.FirstRanker.com

www.FirstRanker

B.Tech I Year I Semester (R15) Regular & Supplementary Examinations November/December 2018 ENGINEERING PHYSICS

(Common to CE, EEE & CSE)

Time: 3 hours

1

Max. Marks: 70

PART – A

(Compulsory Question)

- Answer the following: $(10 \times 02 = 20 \text{ Marks})$
 - (a) Distinguish between the division of phase and division of amplitude in interference, give an example for each.
 - (b) What is optical fibre? Explain the phenomenon on which the optical fibre works.
 - (c) What is Bragg's law?
 - (d) Mention the properties of ultrasonics.
 - (e) A photon has a wavelength of 1.2 A. Calculate its energy in eV and momentum (Plank's constant is 6.62 X 10⁻³⁴ JS, v = 3 X 10⁸ m/sec)
 - (f) What are the merits of classical free electron theory? Explain.
 - (g) Explain the formation of depletion region in p-n junction.
 - (h) Distinguish between soft and hard magnetic materials.
 - (i) Explain the isotope effect in superconductors.
 - (j) Mention a few applications of nanomaterials.

PART – B

(Answer all five units, 5 X 10 = 50 Marks)

UNIT – I

- 2 (a) Obtain the conditions for maxima and minima due to interference of reflected light in thin films of uniform thickness.
 - (b) A soap film of refractive index 1.33 and thickness 5000A is exposed to white light. What wavelengths in the visible region are reflected?

OR

- 3 (a) What is population inversion? How it is achieved? Derive the relation between the probabilities of spontaneous and stimulated emission in terms of Einstein's coefficients.
 - (b) Calculate the wavelength of emitted radiation from GaAs which has the band gap of 1.44 eV.

UNIT – II

- 4 (a) Describe the properties of ultrasonic waves.
 - (b) Describe different methods of detection of ultrasonic waves.
 - OR
- 5 (a) Discuss seven crystal systems and their Bravais lattices with suitable examples.
 - (b) Calculate the ratios d_{100} : d_{110} : d_{111} for a simple cubic lattice.

UNIT – III

- 6 (a) Write the Schrodinger wave equation for a particle in an infinitely deep potential well and find its Eigen values and Eigen functions.
 - (b) Find the energy of an electron moving in an infinitely high potential box of width 1 A. (Mass of the electron is 9.1 X 10⁻³¹ kg and h = 6.63 X 10⁻³⁴ Js) OR
- 7 (a) Explain the formation of bands in solid.
 - (b) Discuss the concept of allowed energy bands in solids on the basis of Kronig-Penny model.

Contd. in page 2

www.FirstRanker.com

www.FirstRanker

UNIT – IV

8 (a) Explain the drift and diffusion currents.

Code: 15A56101

FirstRanker.com

(b) Discuss direct and indirect band gap semiconductors and mention their applications in devices.

OR

- 9 (a) What do you understand by hysteresis loop? Explain the loop on the basis of domains.
 - (b) How do you determine the value of retentivity and coercivity from the hysteresis loop?

UNIT – V

- 10 (a) What do you mean by critical field in superconductivity? Explain.
 - (b) Explain the BCS theory of superconductivity.

OR

- 11 (a) Write a note on quantum confinement.
 - (b) Discuss the optical, thermal, mechanical and magnetic properties of nanomaterials.

www.FirstRanker.com