B.Tech I Year II Semester (R15) Supplementary Examinations December 2018

MATHEMATICS – II

(Common to all branches)

Time: 3 hours Max. Marks: 70

PART - A

(Compulsory Question)

- 1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$
- (a) Find the Laplace transform of $\sin^2 t$.
 - (b) Find the inverse Laplace transform of $\frac{s}{s^2+s+13}$.
 - (c) Find the half range Cosine series for the function $f(t) = t t^2$, 0 < t < 1.
 - (d) Obtain the Fourier series for $f(x) = x^2$ in the interval (-1, 1).
 - (e) State convolution theorem of the inverse transform.
 - (f) Find the Fourier transformation of e^{-x^2} .
 - (g) Solve $p^2 q^2 = x-y$.
 - (h) Solve $q^2 = z^2p^2(1-p^2)$.
 - (i) Find $Z^{-1(\frac{1}{z-2})}$
 - (j) Find Z transform of n³.

PART - B

(Answer all five units, $5 \times 10 = 50 \text{ Marks}$)

UNIT – I

- 2 (a) Apply convolution theorem, evaluate $L^{-1}\left(\frac{1}{(s+a)(s+b)}\right)$.
 - (b) Find the Laplace transform of $\frac{1}{t}(e^{at} e^{bt})$.

OR

Solve by Laplace transform method y'' - 3y' + 2y = 4, where y(0) = 2; y'(0) = 3.

UNIT - II

- 4 (a) Find the Fourier series to represent the function f(x) = |x| from $x = -\pi$ to $x = \pi$.
 - (b) Find the half range Sin series for the function $f(x) = x^2$ in the range $0 \le x \le \pi$.

OR

5 (a) Find the complex form of the Fourier series of $f(x)=e^{-x}$ in $-1 \le x \le 1$.

(b) Expand $f(x) = \begin{cases} \frac{1}{4} - x, & \text{if } 0 < x < \frac{1}{2} \\ x - \frac{3}{4}, & \text{if } \frac{1}{2} < x < 1 \end{cases}$ as the Fourier series of sin terms.

<u>UNIT – III</u>

- Find the Fourier transform of $f(x) = \begin{cases} 1 x^2, & |x| \le 1 \\ 0, & |x| > 1 \end{cases}$ hence deduce that $\int_0^\infty \frac{\sin x}{x} dx$.
- 7 Find the Fourier transformation of $e^{-a^2x^2}$, a>0.

[UNIT – IV]

- 8 (a) Form the partial differential equation $z = f_1(y + 2x) + f_2(y 3x)$ by eliminating the arbitrary function.
 - (b) Use the method of separation of variables, solve $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$ where $u(x, 0) = 6e^{-3x}$.

OR

- 9 (a) From the partial differential equation by eliminating the arbitrary function $(x-a)^2 + (y-b)^2 + z^2 = c^2$
 - (b) Solve the Laplace equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ subject to the conditions (0, y) = u(1, y) = u(x, 0) = 0 and $u(x, a) = \sin\left(\frac{n\pi x}{x}\right)$.

Contd. in page 2

www.FirstRanker.com

www.FirstRanker.com

Code: 15A54201

UNIT - V

- (a) Evaluate Z-transformation of $\frac{z^2}{(z-1)(z-3)}$ using convolution theorem. 10
 - Using Z-transforms, $y_n + \frac{1}{4}y_{n-1} = u_n + \frac{1}{3}u_{n-1}$ where u_n is a unit step sequence. (b)

- (a) Evaluate Z-transformation of $\frac{z^3}{(z-1)^3}$ using convolution theorem. 11
 - (b) Solve the differential equation $u_{n+2} 2u_{n+1} + u_n = 3n + 5$ using Z-transforms.

MWW.FirstPanker.com