B.Tech I Year II Semester (R15) Supplementary Examinations December 2018

ELECTRICAL CIRCUITS - I
(Electrical \& Electronics Engineering)
Time: 3 hours
Max. Marks: 70
PART - A
(Compulsory Question)
1 Answer the following: ($10 \times 02=20$ Marks)
(a) Distinguish between dependent and independent voltage sources.
(b) State Kirchhoff's voltage and current laws.
(c) Define form factor. What is its value for a pure sinusoidal voltage?
(d) State the values of power factor for pure resistance, inductance and capacitance.
(e) Write the expression for resonant frequency of a series R-L-C circuit.
(f) What is Q factor? Write its significance.
(g) For the circuit shown in figure below, find the Thevenin's resistance, across AB.

(h) State reciprocity theorem.
(i) List the parameters of a two port network.
(j) Write the expressions for Y -parameters in terms of $\mathrm{Z}=$ parameters.

PART - B

(Answer all five units, $5 \times 10=50$ Marks)

> UNIT - I

2 (a) For the circuit shown in figure below, find the current flowing in all branches by applying Kirchhoff's laws.

(b) Two coils connected in series have a resistance of 18Ω and when connected in parallel have a resistance of 4Ω. Find the value of resistances.

OR
3 (a) Derive an expression for energy stored in an inductor.
(b) Using source transformation technique, determine the load current in the circuit shown in figure below.

UNIT - II

4 (a) Write short notes on R.M.S and average value for a periodic waveform.
(b) Two impedances in an electrical network are given by $Z_{1}=4.7 \angle 35^{\circ}$ and $Z_{2}=7.36 \angle 48^{\circ}$. Determine in polar form the total impedance Z_{T} given that $Z_{T}=Z_{1} Z_{2} /\left(Z_{1}+Z_{2}\right)$.

OR
5 For an R-L series circuit, the current $i=14.14 \sin (157 \mathrm{t}), \mathrm{R}=5$ ohms, $\mathrm{L}=30 \mathrm{mH}$. Determine: (i) Inductive reactance. (ii) Impedance. (iii) Total voltage. (iv) Power factor. (v) Real power and reactive power.

UNIT - III

For a series RLC circuit, $\mathrm{R}=25$ ohms, $\mathrm{L}=10 \mathrm{mH}$ and $\mathrm{C}=0.06 \mu \mathrm{~F}$. Find the value of Bandwidth and Q factor. Derive the necessary expressions.

OR
7 (a) Draw the current laws of R-L series circuit with variable resistance with constant applied voltage and frequency, deriving necessary expressions.
(b) Derive the expressions for maximum impedance is a practical parallel circuit.
UNIT - IV

Determine the current in 4 ohm resistor for the circuit shown in figure below by using Thevenin's theorem and verify the result using Norton's theorem.

Calculate the value of R which will absorb maximum power from the circuit of given below. Also find the value of maximum power.

www.FirstRanker.com
Code: 15A02201

UNIT - V

Obtain the current and power of the load R_{L}, if the two port shown in the figure below is defined with its Z parameter: $Z=\left[\begin{array}{cc}8 \Omega & -3 \Omega \\ -4 \Omega & 9 \Omega\end{array}\right]$.

Obtain the hybrid parameters for the two port network shown in figure below.

