B.Tech I Year II Semester (R15) Regular \& Supplementary Examinations May 2018

 MATHEMATICS - II(Common to all)
Time: 3 hours

PART - A

(Compulsory Question)
1 Answer the following: ($10 \times 02=20$ Marks $)$
(a) Find the Laplace transform of $\cos ^{2} \mathrm{t}$.
(b) Find the inverse Laplace transform of $\frac{s}{s^{2}+s+13}$.
(c) Find the half range sine series for the function $f(t)=t-t^{2}, 0<t<1$.
(d) Obtain the Fourier series for $\mathrm{f}(\mathrm{x})=\mathrm{x}$ in the interval $(0,2)$.
(e) State convolution theorem of the inverse transforms.
(f) Find the Fourier transformation of $e^{-x^{2}}$.
(g) Solve $\mathrm{py}^{3}+\mathrm{qx}^{2}=0$ by method of separation of variables.
(h) Form the partial differential equation by eliminating the arbitrary constants: $2 z=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$.
(i) Find the Z-transformation of $\left(\mathrm{na}^{\mathrm{n}}\right)$.
(j) Find the inverse Z-transformation of $\frac{1}{z-2}$.

PART - B
(Answer all five units, $5 \times 10=50$ Marks)

UNIT - I

(a) Find the Laplace transform of the function $f(t)=\left\{\begin{array}{l}E \sin \omega t, \quad \begin{array}{l}0<t<\pi / \omega \\ 0,\end{array} \frac{\pi}{\omega}<t<2 \pi / w\end{array}\right.$ having period $2 \pi / \omega$.
(b) Find the Laplace transform of $\frac{1}{t}\left(e^{a t}-e^{b t}\right)$.

OR
Solve by Laplace transform method. $y^{\prime \prime}-3 y^{\prime}+2 y=4$, where $y(0)=2 ; y^{\prime}(0)=3$.

UNIT - II

4 (a) Find the Fourier series to represent $\left(x-x^{2}\right)$ from $x=-\pi$ to $x=\pi$.
(b) Find the half range cosine series for the function $f(x)=x^{2}$ in the range $0 \leq x \leq \pi$

OR
5 (a) Find the complex form of the Fourier series of $\mathrm{f}(\mathrm{x})=\mathrm{e}^{-\mathrm{x}}$ in $-1 \leq \mathrm{x} \leq 1$.
(b) Expand $f(x)=\left\{\begin{array}{l}\frac{1}{4}-x, \text { if } 0<x<\frac{1}{2} \\ x-\frac{3}{4}, \text { if } \frac{1}{2}<x<1\end{array}\right.$ as the Fourier series of sin terms.

UNIT - III
6
Find the Fourier transform of $f(x)=\left\{\begin{array}{l}1,|x|<1 \\ 0,|x>1|\end{array}\right.$ Hence deduce that $\int_{0}^{\infty} \frac{\sin x}{x} d x$.
OR
Find the Fourier transformation of $e^{-a^{2} x^{2}, a>0}$
Contd. in page 2
www.FirstRanker.com

UNIT - IV

8 (a) Form the partial differential equation by eliminating the arbitrary functions $f\left(x^{2}+y^{2}, z-x y\right)=0$.
(b) The ends A and B of a rod 20 cm long have the temperature at $30^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$ until steady state prevails. The temperature of the ends is changed to $40^{\circ} \mathrm{C}$ and $60^{\circ} \mathrm{C}$ respectably. Find the temperature distribution in the rod at time t.

OR

9 (a) Find the partial differential equation by eliminating the arbitrary constants from:
$(x-a)^{2}+(y-b)^{2}+z^{2}=c^{2}$.
(b) A tightly stretched string of length 1 with fixed ends is initially in equilibrium position, it is set vibrating by giving each point a velocity $v_{0} \sin ^{3}\left(\frac{\pi x}{l}\right)$.

UNIT - V

10 (a) Evaluate Z-transformation of $\frac{z^{2}}{(z-1)(z-3)}$ using convolution theorem.
(b) Using Z-transforms solve, $y_{n}+\frac{1}{4} y_{n-1}=u_{n}+\frac{1}{3} u_{n-1}$ where u_{n} is a unit step sequence?

OR
11 (a) Evaluate Z-transformation of $\frac{z^{3}}{(z-1)^{3}}$ using convolution theorem.
(b) Using Z-transforms solve, $U_{n+2}-2 U_{n+1}+U_{n}=3 n+5$.

