www.FirstRanker.com
(Common to CSE and IT)
Time: 3 hours
Max. Marks: 70
PART - A
(Compulsory Question)

1 Answer the following: ($10 \times 02=20$ Marks $)$
(a) What is an unit distance code? Give an example.
(b) Find the complement of the function: $F=x\left(y^{\prime} z^{\prime}+y z\right)$ by taking their duals and complementing each literal.
(c) Define don't care condition with example.
(d) State the limitations of Karnaugh map.
(e) Define priority encoder.
(f) Distinguish between encoder and multiplexer.
(g) Define shift registers.
(h) Give the comparison between combinational circuits and sequential circuits.
(i) What is mask-programmable?
(j) Define fan-in and fan-out of a logic gate.

PART - B
(Answer all five units, $5 \times 10=50$ Marks)

UNIT - I

2 (a) Using 2's compliment, perform (42) ${ }_{10}-(68)_{10}$.
(b) Simplify the following expression: $Y=(A+B)\left(A+C^{\prime}\right)\left(B^{\prime}+C^{\prime}\right)$

OR
3 (a) Simplify the following three variable expressions using Boolean algebra: $Y=\Sigma m(1,3,5,7)$.
(b) Convert the given expression in standard POS form: $\mathrm{Y}=(\mathrm{A}+\mathrm{B})(\mathrm{B}+\mathrm{C})(\mathrm{A}+\mathrm{C})$.

UNIT - II

Minimize the following function using Karnaugh map method and draw simplified logic diagram:

$$
(A, B, C, D, E)=\Sigma m(0,7,8,9,10,12,14,16,18,20,24,28)+\Sigma d(2,5,13)
$$

OR
5 (a) Implement the following function in NAND-NAND two level forms and draw the circuit:

$$
Y=A C+A B C+A^{\prime} B C+A B+D
$$

(b) Convert the given expression in standard SOP form and draw the logic diagram: $\mathrm{Y}=\mathrm{A}+\mathrm{ABC}$.

UNIT - III

Design and draw the logic diagram of full subtractor using two half subtractors.

OR

Using 8 to 1 multiplexer, realize the Boolean function:

$$
T=f(w, x, y, z)=\Sigma(0,1,2,4,5,7,8,9,12,13)
$$

Contd. in page 2

UNIT - IV

Design a mod-10 synchronous counter using JK flip flops. Write excitation table and state table.
OR
A sequential circuit with two D flip flops A and B, input X and output Y is specified by the following next state and output equations:

$$
\begin{aligned}
& A(t+1)=A X+B X \\
& B(t+1)=A^{\prime} X \\
& Y=(A+B) X^{\prime}
\end{aligned}
$$

Draw the logic diagram, derive state table and state diagram.
UNIT - V
Implement the following functions using PLA.

$$
\begin{aligned}
& A(x, y, z)=\sum m(1,2,4,6) \\
& B(x, y, z)=\sum m(0,1,6,7) \\
& C(x, y, z)=\operatorname{\sum m}(2,6)
\end{aligned}
$$

OR
Draw and explain the circuit diagram of the CMOS NOR gate.

