B.Tech II Year I Semester (R15) Regular \& Supplementary Examinations November/December 2018 MATHEMATICS - III
(Common to CE, CSE, IT, ME, EEE, ECE \& EIE)
Time: 3 hours
Max. Marks: 70
PART - A
(Compulsory Question)
1 Answer the following: ($10 \times 02=20$ Marks $)$
(a) Obtain the rank of the matrix $A=\left[\begin{array}{ccc}1 & 0 & 2 \\ -1 & 7 & 0 \\ 1 & 0 & 2\end{array}\right]$.
(b) State the Cayley-Hamilton theorem.
(c) Define Hermitian and Skew-Hermitian.
(d) Obtain the Eigen values of $A=\left[\begin{array}{cc}1 & -4 \\ -2 & 5\end{array}\right]$.
(e) Write the normal equations for a power curve.
(f) Solve the differential equation $\frac{d y}{d x}+y=e^{-x}, y(0)=1$ by Taylor's series method.
(g) Write the formula for interpolation.
(h) Explain the Simpson's $3 / 8^{\text {th }}$ rule.
(i) Discuss the R-K forth order method.
(j) Explain the Picard's method.

PART - B
(Answer all five units, $5 \times 10=50$ Marks)

UNIT - I

2 (a) Prove that Eigen values of an orthogonal matrix are unit modulus.
(b) Test for consistency and solve:

$$
5 x+3 y+2 z=4,3 x+5 y+2 z=9,7 x+2 y+(2 z=4
$$

OR
3
State Cayley-Hamilton theorem and if $A=\left[\begin{array}{ccc}1 & 2 & -2 \\ 1 & -1 & 2 \\ -1 & -4 & -3\end{array}\right]$, evaluate A^{-1}, A^{-2}.
4 (a) Find the positive real root of $x^{3}-2 x=8$ correct to three decimal places, using Newton-Raphson method.
(b) Solve the following equations by Gauss-Seidel iteration method:

$$
x+y-2 z=7,3 x+20 y-2 z=-8, x-3 y+20 z=25
$$

5 (a) Obtain a root of the equation $x^{3}-5 x-6=0$ using the bisection method correct to three decimal places.
(b) Find the positive real root of $\cos x=x e^{x}$ correct to four decimal places, using Regula-Falsi method.

The table gives the distances in nautical miles of the visible horizon for the heights in feet above the earth's surface:

$X=$ height	50	100	150	200	250	300
$Y=$ distance	10.63	13.03	15.04	16.81	18.42	19.90

Apply Newton's backward interpolation formula, obtain the values of y when (i) $\mathrm{x}=120 \mathrm{ft}$. (ii) $\mathrm{x}=310 \mathrm{ft}$.
OR
7 Apply Bessel's formula to obtain y_{25}, given $\mathrm{y}_{20}=2854, \mathrm{y}_{24}=3162, \mathrm{y}_{32}=3992$.

Code: 15A54301

UNIT - IV

Fit a second degree polynomial from the following data:

X	1	2	3	4	5	6	7	8
Y	32	28	39	50	42	50	44	22

Compute the values of $\int_{0.2}^{1.4}\left(\sin x-\operatorname{lox} x+e^{x}\right) d x$ using Simpson's $3 / 8^{\text {th }}$ rule.
UNIT - V
Apply Runge-Kutta method of fourth order, solve:

$$
\frac{d y}{d x}=\frac{y^{2}-x^{2}}{y^{2}+x^{2}} \text { with } y(0)=1 \text { at } x=0.2,0.4
$$

OR
Solve by Taylor's series method the equation:

$$
\frac{d y}{d x}=\log (x y) \text {, for } y(1.1) \text { and } y(1.2) \text { given } y(1)=2
$$

