Code: 15A54301

www.FirstRanker.com

www.FirstRank

B.Tech II Year I Semester (R15) Regular & Supplementary Examinations November/December 2018 **MATHEMATICS – III**

(Common to CE, CSE, IT, ME, EEE, ECE & EIE)

Max. Marks: 70

Time: 3 hours

1

(a)

(b)

PART – A

(Compulsory Question)

Answer the following: $(10 \times 02 = 20 \text{ Marks})$

rstRanker.<mark>com</mark>

matrix
$$A = \begin{bmatrix} 1 & 0 & 2 \\ -1 & 7 & 0 \end{bmatrix}$$

1 State the Cayley-Hamilton theorem.

Obtain the rank of the

- (b) Define Hermitian and Skew-Hermitian. (c)
- Obtain the Eigen values of $A = \begin{bmatrix} 1 & -4 \\ -2 & 5 \end{bmatrix}$. (d)
- Write the normal equations for a power curve. (e)

Solve the differential equation $\frac{dy}{dx} + y = e^{-x}$, y(0) = 1 by Taylor's series method. (f)

0 2

- Write the formula for interpolation. (g)
- Explain the Simpson's 3/8th rule. (h)
- Discuss the R-K forth order method. (i)
- Explain the Picard's method. (j)

PART – B

(Answer all five units, $5 \times 10 = 50$ Marks)

UNIT – I

Prove that Eigen values of an orthogonal matrix are unit modulus. 2 (a)

Test for consistency and solve: 5x + 3y + 2z = 4, 3x + 5y + 2z = 9, 7x + 2y + 2z = 4

3 State Cayley-Hamilton theorem and if
$$A = \begin{bmatrix} 1 & 2 & -2 \\ 1 & -1 & 2 \\ -1 & -4 & -3 \end{bmatrix}$$
, evaluate A^{-1}, A^{-2} .
UNIT – II

Find the positive real root of $x^3 - 2x=8$ correct to three decimal places, using Newton-Raphson method. 4 (a) Solve the following equations by Gauss-Seidel iteration method: (b)

$$x + y - 2z = 7$$
, $3x + 20y - 2z = -8$, $x - 3y + 20z = 25$
OR

- Obtain a root of the equation $x^3 5x 6 = 0$ using the bisection method correct to three decimal places. 5 (a)
- Find the positive real root of $\cos x = xe^x$ correct to four decimal places, using Regula-Falsi method. (b)

UNIT – III

The table gives the distances in nautical miles of the visible horizon for the heights in feet above the 6 earth's surface:

X = height	50	100	150	200	250	300
Y = distance	10.63	13.03	15.04	16.81	18.42	19.90

Apply Newton's backward interpolation formula, obtain the values of y when (i) x = 120 ft. (ii) x = 310 ft.

OR

Apply Bessel's formula to obtain y_{25} , given $y_{20} = 2854$, $y_{24}=3162$, $y_{32}=3992$. 7

Contd. in page 2

www.FirstRanker.com

www.FirstRanker.com

Code: 15A54301

		UNIT – IV				
8	Fit a second degree polynomial from the following data:					
	X 1 2 3 4 5 6 7	8				
	Y 32 28 39 50 42 50 44	22				
		OR				
9	Compute the values of $\int_{0.2}^{1.4} (\sin x - \log x + e)$	dx^{x} using Simpson's 3/8 th rule.				
	(UNIT – V				
10	Apply Runge-Kutta method of fourth order, solve:					
	$\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$ with $y(0) = 1$ at $x = 0.2$	2, 0.4				
		OR				
11	Solve by Taylor's series method the equation:					
	$\frac{dy}{dx} = \log(xy)$, for $y(1.1)$ and $y(1.2)$ give	y(1) = 2.				

www.firstRanker.com