www.FirstRanker.com

www.FirstRanker

*R15

Code: 15A04303

B.Tech II Year I Semester (R15) Regular & Supplementary Examinations November/December 2018

SIGNALS & SYSTEMS

(Common to ECE & EIE)

Time: 3 hours Max. Marks: 70

PART - A

(Compulsory Question)

- 1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$
 - (a) What are the classifications of signals?
 - (b) Distinguish between static and dynamic systems.
 - (c) Draw the graphical form of decaying, raising and double exponential signals.
 - (d) State Sampling theorem and aliasing.
 - (e) State polywiener criterion.
 - (f) What are the characteristics of filter?
 - (g) Show the relation between Fourier and Laplace transform.
 - (h) Determine the DTFT of δ (n-2) + δ (n+2).
 - (i) Define Bilateral and unilateral Laplace transform.
 - (j) State the final value theorem of Laplace and z-transforms.

PART - B

(Answer all five units, $5 \times 10 = 50 \text{ Marks}$)

UNIT – I

- 2 The continuous time signal x(t) is shown in figure below. Sketch the following waveforms:
 - 2x(4t + 2)
 - x(t) u(t)
 - x(t)[u(t)-u(t-1)]
 - Odd{x(t)}

3 Find the exponential Fourier series for half wave rectified sine wave.

Contd. in page 2

Code: 15A04303

UNIT - II

4 For the rectangular pulse shown in figure below, determine the Fourier transformation of x(t) and sketch the magnitude-phase representation with respect to frequency.

OR

5 State and prove sampling theorem.

UNIT – III)

6 Explain the characteristics of ideal filters and why they cannot be realized.

7 Derive the relationship between rise time and bandwidtl

UNIT - IV

8 State and prove the properties of Discrete time Fourier transform.

OR

Find the DTFT of the rectangular pulse described by the following equation: 9

$$x[n] = \begin{cases} 1, & |n| \le M \\ 0, & |n| > M \end{cases}$$

- Find the Laplace Transform of: (i) $x(t) = e^{-at} \sin \omega t$. (ii) $e^{-2t}u(-t)$. 10
 - State and prove convolution and differentiation properties of Laplace transform. (b)

OR

Determine Z-Transform, ROC, pole zero locations of: 11 (a)

(i)
$$x(n) = a^n u(n)$$
.

(ii)
$$x(n) = a^n u(-n-1)$$
.

State and prove any two properties of z- transform. (b)