B.Tech II Year I Semester (R15) Regular \& Supplementary Examinations November/December 2018

PROBABILITY THEORY \& STOCHASTIC PROCESSES
(Electronics and Communication Engineering)
Time: 3 hours
Max. Marks: 70

## PART - A

(Compulsory Question)
1 Answer the following: ( $10 \times 02=20$ Marks $)$
(a) Define the distribution function of a discrete random variable X .
(b) When two events are said to be independent?
(c) How to compute the probability of an event $P\left\{x_{1}<X \leq x_{2}\right\}$ by using distribution function $F_{x}(X)$ ?
(d) If the variance of a random variable X is $\operatorname{Var}(\mathrm{X})$, then the variance of a random variable $\mathrm{Y}=\mathrm{aX}$ is.
(e) Statistically independent zero-mean random processes $X(t)$ and $Y(y)$ have autocorrelation functions $\mathrm{R}_{\mathrm{xx}}(\tau)$ and $R_{y y}(\tau)$, then ACF of ' $\mathrm{X}(\mathrm{t})+\mathrm{Y}(\mathrm{t})$ ' is.
(f) What is the second order moment of the random processes $\mathrm{X}(\mathrm{t})$ if $\mathrm{R}_{\mathrm{XX}}(\tau)=\frac{16}{1+6 \tau^{2}}$ ?
(g) Why the function $S_{X Y}(\mathrm{w})=3+\mathrm{j} \mathrm{w}^{2}$ is a valid CPSD?
(h) Average power of Random processes $X(t)=A \cos (w t+\Theta)$, where $\Theta$ is $R V$.
(i) Define narrow band process.
(j) Obtain the ratio between output PSD $S_{y Y}(w)$ to input PSD $S_{X x}(w)$ from magnitude spectrum:

$$
|H(w)|=\frac{4}{\sqrt{3+\omega^{2}}} .
$$

## PART - B

(Answer all five units, $5 \times 10=50$ Marks)

UNIT - I
A random variable $X$ has the distribution function; $F_{X}^{*}(X)=\sum_{n=1}^{12} \frac{n^{2}}{650} u(x-n)$ evaluate the probability: (i) $P\{-\infty<X \leq 6.5\}$. (ii) $\mathrm{P}(X>4\}$ (iii) $\mathrm{P}\{6<X \leq 9\}$.

## OR

Assume automobile arrivals at a gasoline station are Poisson and occurs at an average rate of 50per/Hour. The station has only one gasoline pump. If all cars are assumed to require one minute to obtain fuel, What is the probability that a weighting line will occur at the pump.

## UNIT - II

Two random variables $X$ and $Y$ have means $\bar{X}=1$ and $\bar{Y}=2$ variances $\sigma_{X}^{2}=4$ and $\sigma_{Y}^{2}=1$ and a correlation coefficient $\rho_{X Y}=0.4$. New random variables W and V are defined by $\mathrm{V}=-\mathrm{X}+2 \mathrm{Y}, \mathrm{W}=\mathrm{X}$ $+3 Y$. Find: (i) The means. (ii) The variances. (iii) The correlations. (iv) The correlation coefficient $\rho_{V W}$ of V and W .

## OR

Let $X \& Y$ be statically independent random variables with $\bar{X}=\frac{3}{4}, \overline{X^{2}}=4, \bar{Y}=1, \overline{Y^{2}}=5$. For a random variable $\mathrm{W}=\mathrm{X}-2 \mathrm{Y}+1$, then calculate: (i) $R_{X Y}$. (ii) $R_{X W}$. (iii) $C_{X Y}$ and verify X \& Y are uncorrelated or not.

Contd. in page 2
www.FirstRanker.com
Code: 15A04304

## UNIT - III

If $X(t)=A \operatorname{Cos}\left(\omega_{0} t+\theta\right)$, whre $A, \omega_{0}$ are constants, and $\theta$ is a uniform random variable on $(-\pi, \pi)$. A new random process is defined by $Y(t)=X^{2}(t)$.
(i) Obtain the mean and auto correlation function of $X(t)$.
(ii) Obtain the mean and auto correlation function of $Y(t)$.
(iii) Find the cross correlation function of $X(t) \& Y(t)$.
(iv) Are $X(t)$ and $Y(t)$ are WSS.
(V) Are $X(t) \& Y(t)$ are jointly WSS.

## OR

Two random process $X(t) \& Y(t)$ are defined as:
$X(t)=A \operatorname{Cos}\left(\omega_{0} t\right)+B \operatorname{Sin}\left(\omega_{0} t\right), Y(t)=B \operatorname{Cos}\left(\omega_{0} t\right)-A \operatorname{Sin}\left(\omega_{0} t\right), \quad \mathrm{A}, \quad \mathrm{B}$ are uncorrelated, zero mean random variables with same variance, $\omega_{0}$ is constant: (i) Determine $R_{X Y}(t, t+\tau)$. (ii) check $X(t), Y(t)$ are jointly WSS or not.
UNIT - IV

Suppose the cross power spectrum is defined by:

$$
\begin{gathered}
S_{X Y}(\omega)=a+\frac{j b \omega}{W},-W \leq \omega \leq W \\
0, \text { Otherwise }
\end{gathered}
$$

Where $\mathrm{a}, \mathrm{b}$ are real constants, then obtain cross correlation functions $R_{X Y}(\tau)$ and $R_{Y X}(\tau)$.

## OR

Determine the cross correlation function, whose cross PSD is
$S_{X Y}(\omega)=\frac{8}{(\alpha+j \omega)^{3}}$ and also find $S_{Y X}(\omega), R_{Y X}(\omega)$.
UNIT - V
Obtain the transfer function $H(\omega)$ of the network as shown in figure below if $\mathrm{C}_{1}=5 \mathrm{~F}, \mathrm{C}_{2}=10 \mathrm{~F}$ and $R=10 \Omega$, then determine $S_{X Y}(\omega)$ if $R_{X X}(\tau)=5 \delta(\tau)$.


Consider a linear system as shown in figure below.


If ACF of input $R_{X X}(\tau)=5 \delta(\tau)$, then determine: (i) ACF of response. (ii) PSD of response. (iii) Mean square value of response.

