

www.FirstRanker.com

www.FirstRanker.sof

B.Tech II Year I Semester (R15) Regular & Supplementary Examinations November/December 2018 **PROBABILITY THEORY & STOCHASTIC PROCESSES**

(Electronics and Communication Engineering)

Max. Marks: 70

Time: 3 hours

1

PART – A

(Compulsory Question)

- Answer the following: (10 X 02 = 20 Marks)
 - (a) Define the distribution function of a discrete random variable X.
 - (b) When two events are said to be independent?
 - (c) How to compute the probability of an event $P\{x_1 < X \le x_2\}$ by using distribution function $F_x(X)$?
 - (d) If the variance of a random variable X is Var(X), then the variance of a random variable Y = aX is.
 - (e) Statistically independent zero-mean random processes X(t) and Y(y) have autocorrelation functions $R_{XX}(\tau)$ and $R_{\gamma\gamma}(\tau)$, then ACF of 'X(t) + Y(t)' is.
 - (f) What is the second order moment of the random processes X(t) if $R_{XX}(\tau) = \frac{16}{1+6\tau^2}$?
 - (g) Why the function $S_{XY}(w) = 3 + jw^2$ is a valid CPSD?
 - (h) Average power of Random processes $X(t) = A\cos(wt+\Theta)$, where Θ is RV.
 - (i) Define narrow band process.
 - (j) Obtain the ratio between output PSD $S_{YY}(w)$ to input PSD $S_{XX}(w)$ from magnitude spectrum:

$$\mathsf{H}(\mathsf{w})| = \frac{4}{\sqrt{3+\omega^2}}.$$

PART – B (Answer all five units, $5 \times 10 = 50$ Marks)

UNIT - I

A random variable X has the distribution function: $F_X(X) = \sum_{n=1}^{12} \frac{n^2}{650} u(x-n)$ evaluate the probability: (i) $P\{-\infty < X \le 6.5\}$. (ii) $P(X > 4\}$ (iii) $P\{6 < X \le 9\}$.

OR

3 Assume automobile arrivals at a gasoline station are Poisson and occurs at an average rate of 50per/Hour. The station has only one gasoline pump. If all cars are assumed to require one minute to obtain fuel, What is the probability that a weighting line will occur at the pump.

UNIT – II

4 Two random variables X and Y have means $\overline{X} = 1$ and $\overline{Y} = 2$ variances $\sigma_X^2 = 4$ and $\sigma_Y^2 = 1$ and a correlation coefficient $\rho_{XY} = 0.4$. New random variables W and V are defined by V = -X + 2Y, W = X + 3Y. Find: (i) The means. (ii) The variances. (iii) The correlations. (iv) The correlation coefficient ρ_{VW} of V and W.

OR

5 Let X & Y be statically independent random variables with $\overline{X} = \frac{3}{4}$, $\overline{X^2} = 4$, $\overline{Y} = 1$, $\overline{Y^2} = 5$. For a random variable W = X-2Y+1, then calculate: (i) R_{XY} . (ii) R_{XW} . (iii) C_{XY} and verify X & Y are uncorrelated or not.

Contd. in page 2

www.FirstRanker.com

www.FirstRanker.com

Code: 15A04304

UNIT – III

- 6 If $X(t) = A \cos(\omega_0 t + \theta)$, whre A, ω_0 are constants, and θ is a uniform random variable on $(-\pi, \pi)$. A new random process is defined by $Y(t) = X^2(t)$.
 - (i) Obtain the mean and auto correlation function of X(t).
 - (ii) Obtain the mean and auto correlation function of Y(t).
 - (iii) Find the cross correlation function of X(t) & Y(t).
 - (iv) Are X(t) and Y(t) are WSS.
 - (V) Are X(t) & Y(t) are jointly WSS.

OR

7 Two random process X(t) & Y(t) are defined as: $X(t) = A \cos(\omega_0 t) + B \sin(\omega_0 t), Y(t) = B \cos(\omega_0 t) - A \sin(\omega_0 t), A, B$ are uncorrelated, zero mean random variables with same variance, ω_0 is constant: (i) Determine $R_{XY}(t, t + \tau)$. (ii) check X(t), Y(t) are jointly WSS or not.

UNIT – IV

8 Suppose the cross power spectrum is defined by:

$$S_{XY}(\omega) = a + \frac{jb\omega}{W}, -W \le \omega \le W$$

0, Otherwise

Where a, b are real constants, then obtain cross correlation functions $R_{XY}(\tau)$ and $R_{YX}(\tau)$.

- 9 Determine the cross correlation function, whose cross PSD is $S_{XY}(\omega) = \frac{8}{(\alpha + j\omega)^3} \text{ and also find } S_{YX}(\omega), R_{YX}(\omega).$
- **UNIT V** 10 Obtain the transfer function $H(\omega)$ of the network as shown in figure below if $C_1 = 5F$, $C_2 = 10F$ and $R = 10\Omega$, then determine $S_{XY}(\omega)$ if $R_{XX}(\tau) = 5 \delta(\tau)$.

11 Consider a linear system as shown in figure below.

If ACF of input $R_{XX}(\tau) = 5 \delta(\tau)$, then determine: (i) ACF of response. (ii) PSD of response. (iii) Mean square value of response.
