B.Tech II Year I Semester (R15) Regular \& Supplementary Examinations November/December 2018

ENGINEERING MECHANICS

(Mechanical Engineering)
Max. Marks: 70
Time: 3 hours
PART - A
(Compulsory Question)
1 Answer the following: ($10 \times 02=20$ Marks $)$
(a) Write a brief note on degrees of freedom.
(b) State Lami's theorem.
(c) Write short notes on cone of friction and centrifugal tension in flat belt drive.
(d) State the laws of Coulomb friction.
(e) Define the term centroid.
(f) What is parallel axis theorem related to moments of area? Illustrate with a neat sketch.
(g) State the assumptions necessary for the analysis of a plane projectile motion.
(h) Define constrained motion.
(i) Define time period and cyclic frequency of a vibrating system.
(j) What is center of percussion?

PART - B
(Answer all five units, $5 \times 10=50$ Marks)
UNIT - I
2 Using the method of projections, find the magnitude and direction of the resultant R of the four concurrent forces as shown in figure below and having magnitude $F_{1}=1500 \mathrm{~N}, F_{2}=2000 \mathrm{~N}$, $\mathrm{F}_{3}=3500 \mathrm{~N}$ and $\mathrm{F}_{4}=1000 \mathrm{~N}$.

The strings 1 and 2 are attached to the point A and point B, respectively at one end. The other end of the strings 1 and 2 is attached to a ring at point C. Remaining strings 3 and 4 attached to the ring at one end and ride over frictionless pulleys on the other end and carry loads P and Q respectively as shown in figure below. Find the tensile forces in the strings 1 and 2 . The following numerical data are given; $\mathrm{P}=800 \mathrm{~N}, \mathrm{Q}=1000 \mathrm{~N}, \alpha=60^{\circ}, \beta=45^{\circ}$ and $\gamma=30^{\circ}$.

Code: 15A03302

UNIT - II

In the compound pulley arrangement as shown in figure below. Larger pulley has diameter 3 m and smaller pulley 2 m . If the coefficient of friction for all contiguous surfaces is $1 / \pi$, determine the magnitude of W_{2} which can be supported without rotation of fixed pulley while $\mathrm{W}_{1}=250 \mathrm{~N}$.

UNIT - III

6 (a) Determine the centroid of the unequal l-section as shown in figure below.

(b) Explain transfer theorem for second moment of area.

OR
7 (a) Determine the second moment of area of a rectangle about centroidal axes and about two edges.
(b) Explain the term radius of gyration.
www.FirstRanker.com
Code: 15A03302

UNIT - IV

10 (a) A 2 HP motor of weight 1805 kg is mounted symmetrically on four identical springs, each of stiffness $200 \mathrm{gm} / \mathrm{mm}$. Determine the frequency and the time period of vibration of motor.
(b) For the case of a free vibration as shown in figure has spring constant $750 \mathrm{gm} / \mathrm{mm}$. Derive the expressions of displacement and maximum velocity when: (i) The mass starts vibrating by displacing it 0.1 m below its equilibrium position. (ii) The mass vibrates with initial velocity of $3.5 \mathrm{~m} / \mathrm{s}$.

A particle of mass ' m ' performs SHM starting from initial position at rest. To reach another position of rest, it traverses distances in 3 consecutive seconds are x_{1}, x_{2} and x_{3} measured from initial position at rest. Derive an expression for the time period of the motion.

