B.Tech II Year I Semester (R15) Supplementary Examinations June 2018
 SWITCHING THEORY \& LOGIC DESIGN

(Common to ECE \& EIE)
Time: 3 hours
Max. Marks: 70

PART - A

(Compulsory Question)

1 Answer the following: ($10 \times 02=20$ Marks $)$
(a) Converting the following to decimal and then to octal:
(i) $(4243)_{16}$.
(ii) $(125 \mathrm{~F})_{16}$.
(b) Write are the steps for tabular method-simplification of Boolean function?
(c) Design procedure for combinational logic circuits.
(d) Write the differences between Latches and Flip-Flops.
(e) Give design procedure for asynchronous sequential circuits.
(f) Define EPROM and EEPROM.
(g) Write the basic definition for Boolean algebra.
(h) Give comparison between POS and SOP.
(i) What is multiplexer with example?
(j) Briefly explain about D-flip-flop.

PART - B
(Answer all five units, $5 \times 10=50$ Marks)
UNIT - 1
2 (a) Explain Logic Operations and logic gates with examples.
(b) Perform the subtraction with the following unsigned binary numbers by taking the 2 's complement of the subtrahend: (i) 11010-10000. (ii) 11010-1101. (iii) 1010100-1010100.

OR

3 (a) Why the binary number system is used in computer design? And what is the necessity of binary codes?
(b) Perform the following using BCD arithmetic. Verify the result:
(i) $1273_{10}+9587_{10}$.
(ii) $7762_{10}+3838_{10}$
(iii) $7842_{10}+4956_{10}$.

UNIT - II
Implement the function F with the following two level forms:
(i) NAND-AND. (ii) AND-NOR. (iii) OR-NAND. (iv) NOR-OR.

$$
F(A, B, C, D)=\pi(0,1,2,3,4,8,9,12)
$$

OR

5 Minimize following function using Tabular minimization:

$$
F(A, B, C, D)=\pi M(6,7,8,9)+d(10,11,12,13,14,15)
$$

UNIT - III

6 (a) What is decoder? Construct $3^{*} 8$ decoder Using logic gates and truth table.
(b) Implement the following multiple output combinational logic using 4 line to 16 line decoder?

OR
7 (a) Design a combinational logic to subtract one bit from the other. Draw the logic diagram using NAND and NOR gates.
(b) Explain the function of Digital magnitude comparator using a neat diagram.
www.FirstRanker.com
Code: 15A04302

UNIT - IV

8 (a) Convert the following: (i) JK flip-flop to T flip-flop. (ii) RS flip-flop to D flip-flop.
(b) Draw the circuit diagram of 4-bit Ring Counter D flip-flop and explain its Operation with the help of bit pattern.

OR
9 (a) Compare synchronous and asynchronous Sequential circuits with examples.
(b) Design a Mod-6 synchronous counter using JK flip-flops? With state Table and K-map simplification.

UNIT - V

10 (a) Derive the PLA programming table for the combinational circuit that squares a 3-bit number.
(b) Design a BCD to excess-3 code convert using: (i) ROM. (ii) PAL.

OR
11 (a) A combinational circuit is defined by the functions:

$$
\begin{aligned}
& F_{1}=(A, B, C)=\pi m(3,5,6,7) \\
& F_{2}=(A, B, C)=\pi m(0,2,4,7)
\end{aligned}
$$

Implement the circuit with a PAL having three inputs, four product terms and two outputs.
(b) Explain the field programmable gate array (FPGA) with suitable block diagram.

