Code: 15A05404

www.FirstRanker.com

www.FirstRanker

B.Tech II Year II Semester (R15) Supplementary Examinations December 2018

FORMAL LANGUAGES & AUTOMATA THEORY

(Computer Science & Engineering)

Time: 3 hours Max. Marks: 70

PART - A

(Compulsory Question)

- 1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$
- (a) Define inductive proof.
 - (b) Differentiate NFA and DFA.
 - (c) Write the regular expression to denote a language L which accepts all the strings which begin or end with either 00 or 11.
 - (d) State the pumping lemma for regular language.
 - (e) If $\delta \to a\delta b/aAb$, $A \to bAa$, $A \to bAa$, $A \to ba$. Find the language generated by the grammar.
 - (f) Generate context free grammar L={w/w contain at least three a's}.
 - (g) What do you mean by instantaneous description for push down automata?
 - (h) Mention the normal forms of context free grammar. Justify the need of normal forms.
 - (i) Draw transition diagram of the tuning machine to recognize all strings consisting of an even number of 1's over Σ ={1}.
 - (j) Distinguish between regular languages and recursively enumerable languages.

PART - B

(Answer all five units, $5 \times 10 = 50 \text{ Marks}$)

UNIT – I

2 Convert the following NFA to DFA.

	0	1
→p	p, r	σ
q	r, s	ρ
*r	p, s	r
*s	q, r	¢

OR

3 Minimize the finite automaton shown in figure below.

UNIT – II

4 Convert the following NFA into regular expression.

5 Summarize the closure properties of regular language.

Contd. in page 2

www.FirstRanker.com

www.FirstRanker.com

Code: 15A05404

UNIT – III

6 Find the CNF of the following grammar:

 $S \to OAO ||B||BB$

 $A \rightarrow C$

B→S/A

 $C \rightarrow S/\in$

OR

7 Show that the following grammars are ambiguous:

 $S \rightarrow asbs/bsas/\epsilon$

 $S \rightarrow AB/aaB, A \rightarrow a/Aa, B \rightarrow b.$

UNIT – IV

8 Let $M=(\{q_0,q_1\}, \{0,1\}, \{x,z_0\}, \delta, q_0, z_0, e)$ where δ is given by:

 $\delta(q_0,0,z_0)=(q_0,xz_0)$

 $\delta(q_1,1,x)=(q_1,\in)$

 $\delta(q_0,0,x) = (q_0,xx)$

 $\delta(q_1, \in, x) = (q_1, \in)$

 $\delta(q_0,1,x)=(q_1,\in)$

 $\delta(q_1,\in,z_0){=}(q_1,\in)$

Construct a CFG for the PDAM.

OR

Show that the language $L=\{a^ib^ic^i/i\ge 1\}$ is not context free language.

UNIT – V

Define post correspondence problem. Let $\Sigma = \{0, 1\}$. Let A and B be the lists of three strings each, defined as:

	List A	List B
i	Wi	Xi
1	1	111
2	10111	10
3	10	0

Does this PCP have a solution?

OR

Design a Turing machine for multiplying two numbers using subroutine.
