B.Tech II Year II Semester (R15) Supplementary Examinations December 2018

DATA STRUCTURES
(Electronics \& Communication Engineering)
Time: 3 hours
Max. Marks: 70
PART - A
(Compulsory Question)
1 Answer the following: ($10 \times 02=20$ Marks $)$
(a) Define asymptotic notations.
(b) Differentiate between arrays and linked list.
(c) What is linear data structure? Discuss difference between FIFO and LIFO concepts.
(d) Minimum how many numbers of queues are needed to implement the priority queue?
(e) Find the maximum height of any AVL tree with 9 nodes.
(f) What is threaded binary tree? List its advantages.
(g) What is the difference between internal sort and external sort?
(h) List the advantages and disadvantages of merge sort.
(i) Define hashing.
(j) What do you mean by double hashing?

> PART - B
> (Answer all five units, $5 \times 10=50$ Marks)
> UNIT - I

2 (a) Explain the pseudo code to insert a new node in the beginning and end of the singly linked list.
(b) Consider a 2-D array A: [-200:200, -10:100]. Find the address of the element A [199, 50] by considering the base address 10 and assume each element takes 4 bytes for storage. Follow row major order.

OR

3 Write an algorithm to perform the following operation on a singly linked list:
(i) Insert node at the beginning of list.
(ii) Insert new node at middle.
(iii) Delete a node in the middle and last.
(iv) Count the number of nodes.

4 (a) Write an algorithm to implement insert operation into a circular queue using linked list representation of a queue.
(b) Draw the hash table with size 11 , resulting from hashing the keys: $12,44,13,88,23,94,11,39,20$, 16 and 5 using the hash function $h(i)=(2 i+5) \bmod 11$.

OR

5 (a) Write an algorithm to implement PUSH and POP operations on stack.
(b) Convert the following infix expression into post-fix notation:

$$
\mathrm{A}+(\mathrm{B} * \mathrm{C}-(\mathrm{D} / \mathrm{E} / \mathrm{F}) * \mathrm{G}) * \mathrm{H}
$$

Contd. in page 2

UNIT - III

6 (a) What is the difference between heap and binary search tree? Construct the heap and binary search tree for the following data set: $55,64,82,23,10,62,98,33,66,18,76$ and 55.
(b) Explain Dijkstra's algorithm for finding the shortest path in a given graph.

OR

10 (a) Discuss sequential search procedure with example.
(b) What is collision resolution? Discuss various open addressing methods to collision resolution with example and make a comparison among them.

OR

Given input (371, $323,173,199,344,679,989$) and has function $\mathrm{h}(\mathrm{x})=\mathrm{x}$ mod 10 , show the result using: (i) Separate chaining. (ii) Closed hashing using linear probing, quadratic probing, and double hashing $h_{2}(x)=7-(x \bmod 7)$.

