

www.FirstRanker.com

www.FirstRanker

B.Tech II Year II Semester (R15) Supplementary Examinations December 2018

## ELECTROMAGNETIC FIELDS

(Electrical & Electronics Engineering)

Max. Marks: 70

Time: 3 hours

PART – A

## (Compulsory Question)

- 1 Answer the following: (10 X 02 = 20 Marks)
  - (a) Find the force in Newton on charge  $Q_1 = 20 \ \mu C$  situated at (0, 1, 2) m due to charge  $Q_2 = -300 \ \mu C$  situated at (2, 0, 0) m.
  - (b) State Gauss law.
  - (c) Define dielectric strength of a material mention the same for air.
  - (d) Define electric field intensity
  - (e) Plane y = 0 carries a uniform current of  $30 \ \bar{a}_z \ ma/m$ . Calculate the magnetic field intensity at (1, 10, -2) m in rectangular co-ordinate system.
  - (f) State Ampere's circuital law.
  - (g) Define self and mutual inductance.
  - (h) State Laplace equation for scalar magnetic potential.
  - (i) State Poynting theorem.
  - (j) Write the wave equation in lossy dielectric.

### PART – B

(Answer all five units, 5 X 10 = 50 Marks)

# UNIT – I

2 A circular disc of radius 'a' meter is charged uniformly with a charge density of  $P_s c/m^2$ . Find the electric field at a point 'h' m from the disc along its axis.

### OR

3 Derive the expression of Poisson's equation of electrostatics.

## (UNIT – II)

4 Derive the electrostatic boundary conditions at the interface of two dielectrics.

OR

5 Derive the expression for the capacitance between: (i) Two parallel plates. (ii) Two coaxial cylinders.

### UNIT – III

6 Find an expression for magnetic field intensity around infinitely long straight conductor using Biot Savart's law.

#### OR

7 Explain magnetic dipole, magnetic vector potential, magnetic dipole moment and torque, deriving necessary expressions.

# UNIT – IV

8 Derive the expression for the inductance of: (i) Solenoid. (ii) Toroid.

#### OR

9 Obtain the expression for energy stored in magnetic field of a coil possessing an inductance L when the current in the coil is 1 amp.

# UNIT – V

10 Derive wave equations in phasor form and also derive for  $\alpha$ ,  $\beta$ ,  $\gamma$  and  $\eta$ .

# OR

11 Derive the Maxwell's equations for field varying harmonically with time.

#### \*\*\*\*

### www.FirstRanker.com