B.Tech III Year I Semester (R15) Supplementary Examinations June 2018 STRUCTURAL ANALYSIS - II

(Civil Engineering)
Max. Marks: 70
Time: 3 hours
PART - A
(Compulsory Question)
1 Answer the following: ($10 \times 02=20$ Marks $)$
(a) Write the formulae for the horizontal thrust for two hinge arch carrying udl throughout the span and Point load at crown.
(b) Find the horizontal thrust for a three hinged parabolic arch carrying a point load of W at its crown.
(c) Explain Rib Shortening effect in the arches.
(d) Compare the moment distribution method and Kani's method.
(e) Determine the Rotation factor of all the members for the continuous beam shown in figure below.
A

(2I)

(I)

(f) Explain the difference between local stiffness and global stiffness matrix.
(g) Distinguish between static indeterminacy and kinematic indeterminacy?
(h) Determine the slope at the joint B for the Continuous beam shown in figure below.

(i) Write the values of shape factor for (i) Circle and (ii) Diamond
(j) Define Plastic Modulus.

PART - B
(Answer all five units, $5 \times 10=50$ Marks)
UNIT - I

A two hinged parabolic arch has a span of 50 m and rise 12 m . A concentrated load of 8 kN acts at 15 m from the left support .Calculate the horizontal thrust, maximum bending moment at 15 m from left support OR
A three-hinge circular arch of span 12M and rise of 5 M having supports at same levels, carries a UDL of intensity $36 \mathrm{KN} / \mathrm{m}$ over the left half span and a concentrated load of 64 KN at a section 5 m from the right support. Determine the horizontal thrust developed. Find the Normal thrust and Radial Shear for the arch.

UNIT - II

Analyse the frame shown in fig below using Moment Distribution Method and draw the bending moment diagram. El is constant throughout.
/ $10 \mathrm{kN} / \mathrm{m}$

www.FirstRanker.com
Code: 15A01505

Analyse the frame as shown in fig below using slope deflection method and sketch the bending moment diagram. $2 \mathrm{I}_{\mathrm{AB}}=\mathrm{I}_{\mathrm{BC}}=2 \mathrm{I}_{\mathrm{CD}}=\mathrm{l}$.

UNIT - III
Analyse the frame as shown in fig below using Kani's method and sketch the bending moment diagram?

Analyse the frame as shown in fig below using Kani's method and sketch the bending moment diagram?

Analyse the beam shown in fig below using Flexibility matrix method. Take El constant throughout.

Analyse the beam shown in fig below using Stiffness matrix method. Take El constant throughout.

UNIT - V

A fixed beam of span 8 m carries a udl load w on the left half portion. If the fully plastic moment of the beam is $150 \mathrm{kN}-\mathrm{m}$. Find the value of the collapse load.

OR
A propped cantilever of span L is subjected to uniformly distributed load w per unit length. Determine the collapse load, if the plastic moment capacity of the beam is Mp .

