

www.FirstRanker.com

www.FirstRanker R075

Code: 15A04509

B.Tech III Year I Semester (R15) Supplementary Examinations June 2018

LINEAR & DIGITAL IC APPLICATIONS

(Electrical & Electronics Engineering)

Time: 3 hours Max. Marks: 70

PART - A

(Compulsory Question)

- 1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$
 - (a) When is an Op-Amp said to be an ideal?
 - (b) Draw sample and hold circuit.
 - (c) Draw the functional diagram of successive approximation ADC.
 - (d) A 12 bit DAC has a resolution of 20m V/LSB. Find the full scale output voltage.
 - (e) Find the order of a low pass Butterworth filter that is to provide 40dB attenuation at $\omega/\omega_h=2$.
 - (f) Design a phase shift oscillator to oscillate at 100Hz.
 - (g) Mention the advantages of integrated circuits over discrete components.
 - (h) What happens when excess gate voltage is given to CMOS devices?
 - (i) Design a full adder circuit using decoder.
 - (j) Design an 1-bit magnitude comparator.

PART - B

(Answer all five units, $5 \times 10 = 50 \text{ Marks}$)

UNIT – I

- 2 (a) Elaborate on an Op-Amp circuit which can generate single output pulse with adjustable time duration in response to a trigger signal.
 - (b) Design an amplifier with a gain of -10 and input resistance equal to 10 k Ω .

OR

State the need for frequency compensation technique. With neat gain V_S frequency curves elaborate and derive the necessary equations used for different compensating techniques.

UNIT – II

- What output voltage will be produced by a D/A converter whose output range is 0 to 10 V and whose input binary number is:
 - (i) 10 (for 2-bit DAC)
 - (ii) 0110 (for 4-bit DAC)
 - (iii) 10111100 (for 8-bit DAC).

OR

5 Derive lock-in range and capture range of PLL with its neat block diagram and its explanation.

(UNIT - III)

- 6 (a) What are delay equalizers and why is it called so? With circuit diagram, derive the necessary equations to justify it.
 - (b) Design a triangular wave generator using Op-Amp.

OR

7 Derive the output frequency of VCO.

UNIT – IV

8 Differentiate between MOS and CMOS. Elaborate on open drain and tristate CMOS outputs.

OR

9 Design a two input NAND gate using TTL open collector output and tristate output.

(UNIT – V)

Design a synchronous decade counter using D flip-flop.

OR

- 11 (a) Design a full subtractor circuit using 4x1 multiplexers.
 - (b) Design a 2-bit magnitude comparatwww.FirstRanker.com