B.Tech III Year II Semester (R15) Supplementary Examinations December/January 2018/19

DIGITAL SIGNAL PROCESSING

(Common to ECE \& EIE)
Time: 3 hours
Max. Marks: 70

PART - A

(Compulsory Question)
1 Answer the following: ($10 \times 02=20$ Marks $)$
(a) If DFT of $x(n)$ is $X(k)$, what is the DFT of $x(n-1)$.
(b) Define circular convolution.
(c) How many computations are required for finding 1024 point DFT using FFT?
(d) Define correlation of two sequences.
(e) Sketch the direct form II realization for a first order IIR digital filter.
(f) What is a transposed structure?
(g) Write two important differences between FIR and IIR filters.
(h) Mention two commonly used analog filters.
(i) What is decimation? Sketch a signal and its signal decimated by 2.
(j) Mention few applications of multi rate signal processing.

PART - B
(Answer all five units, $5 \times 10=50$ Marks)

UNIT - I

3 (a) State and prove the time shifting property of DFT.
(b) Find the 3 point DFT of $h(n)=\frac{1}{3}$ for $0 \leq n \leq 2$.

UNIT - II

Compute the 8 point DFT of the sequence $x(n)=\{0.5,0,0.5,0,0.5,0,0.5,0\}$ using DIT-FFT algorithm.

OR

Explain with flow diagram the computation of split radix FFT for radix 6 .

UNIT - III

6 (a) Realize the system $H(z)=1 / 2+1 / 3 z^{-1}+z^{-2}+1 / 4 z^{-3}+z^{-4}+1 / 3 z^{-5}+1 / 2 z^{-6}$ in direct form.
(b) Draw the structure of a single stage and two stage all-zero lattice FIR filter.

OR

Obtain the cascade form of realization for the system:

$$
\begin{gathered}
y(n)+0.1 y(n-1)=0.2 y(n-2)+3 x(n)+3.6 x(n-1)+0.6 x(n-2) \\
\text { UNIT - IV }
\end{gathered}
$$

Determine the filter coefficients $\mathrm{h}(\mathrm{n})$ of a FIR filter obtained by frequency sampling method for $\mathrm{N}=7$, given:

$$
\begin{array}{cc}
\mathrm{H}_{\mathrm{d}}\left(\mathrm{e}^{\mathrm{j} \omega}\right)=\mathrm{e}^{-\mathrm{j}(\mathrm{~N}-1) \omega / 2}, & 0 \leq|\omega| \leq \pi / 2 \\
0, & -\pi / 2 \leq|\omega| \leq \pi / 2
\end{array}
$$

OR

Determine $\mathrm{H}(\mathrm{z})$ given $\mathrm{H}(\mathrm{s})=1 /\left(\mathrm{s}^{2}+7 \mathrm{~s}+10\right)$ using: (i) Impulse invariant transformation. (ii) Bilinear transformation method. Assume $\mathrm{T}=0.2 \mathrm{sec}$.

UNIT - V

Describe the process of interpolation. With necessary equations and explain the spectrum of the interpolated signal.

