Code: 15A02606 www.FirstRanker.com

B.Tech III Year II Semester (R15) Supplementary Examinations December/January 2018/2019

OPTIMIZATION TECHNIQUES

(Electrical & Electronics Engineering)

Time: 3 hours Max. Marks: 70

PART - A

(Compulsory Question)

- 1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$
 - (a) Write a short note on modern methods of optimization.
 - (b) Define a usable feasible direction.
 - (c) Define hyperplane.
 - (d) Prove that "The intersection of any number of convex sets is also convex".
 - (e) What is a one-dimensional minimization problem?
 - (f) Define Fibonacci numbers.
 - (g) Why is handling of equality constraints difficult in the penalty function methods?
 - (h) What is the limitation of the linear extended penalty function?
 - (i) What is two point cross-over?
 - (j) What is hybrid intelligent controller?

PART - B

(Answer all five units, $5 \times 10 = 50 \text{ Marks}$)

UNIT – I

- 2 Explain the following with suitable examples:
 - (i) Design vector. (ii) Objective function. (iii) Constraints.

OF

3 Solve the following problem using Kuhn-Tucker conditions:

Maximize
$$f(x_1, x_2) = 2x_1 + x_2 - x_1^2$$

Subject to
$$2x_1 + 3x_2 \le 6$$

$$2x_1 + x_2 \le 4$$

$$x_1, x_2 \ge 0$$

UNIT – II

4 Use simplex method to solve the following LP problem:

Minimize Z = 5x + 6y

Subject to constraints $2x + 5y \ge 1500$

$$3x + y \ge 1200$$
 and

$$x, y \ge 0$$

OR

Find the initial BFS by north-west corner rule and least cost method for the following transportation problem. Compare the transportation cost by each of those methods.

	W	X	Υ	Z	Availability
Α	19	30	50	10	7
В	70	30	40	60	9
С	40	8	70	20	18
Requirement	5	8	7	14	•

Contd. in page 2

www.FirstRanker.com

www.FirstRanker.com

Code: 15A02606

UNIT – III

- 6 (a) Min $f(X) = X_1^2 X_1X_2 + 3X_2^2$ use univariant method by taking starting point as (1, 2). Show calculations only for two cycles.
 - (b) State the limitations of univariant method and how do you overcome them.

OR

- 7 (a) State the characteristics of Fibonacci method.
 - (b) Find Min $Z = X^3 3X 5$. Take initial interval as [0, 1.2] and accuracy $\alpha = 10\%$. Solve it by Fibonacci method.

UNIT – IV

8 Using penalty function method, solve the following problem.

Min
$$Z = (X_2 - 1)^2 + 4(X_2 - 3)^2$$

Subject to $x_1^2 + x_2^2 = 5$

OR

- 9 (a) State the characteristics of a constrained non-linear programming problem. Classify it.
 - (b) Explain interior penalty function method for a constrained non-linear programming problem.

UNIT – V

What are different types of SWARM intelligence programming methods? Explain any one Swarm intelligence programming method in detail.

OR

11 Use genetic algorithm to solve the following NLP problem.

Minimize
$$(x_1 - 1.5)^2 + (x_2 - 4)^2$$

Subject to $4.5x_1 + x_2^2 \le 0$
 $2x_1 - x_2 - 1 \ge 0$
 $0 \le x_1, x_2 \le 4$