www.FirstRanker.com

www.FirstRanker R 15

Code: 15A01603

B.Tech III Year II Semester (R15) Regular Examinations May/June 2018

GEOTECHNICAL ENGINEERING - II

(Civil Engineering)

Time: 3 hours Max. Marks: 70

PART - A

(Compulsory Question)

- 1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$
 - (a) What are the purposes of site investigations?
 - (b) What are the factors that affect the sample disturbance?
 - (c) What are different types of slope failures?
 - (d) What is a stability number?
 - (e) What are the factors affecting the magnitude of lateral earth pressure?
 - (f) What are the assumptions in Coulomb's theory?
 - (g) Define 'ultimate bearing capacity'.
 - (h) What is factor controlling the allowable soil pressure for foundation in cohesive soils?
 - (i) What are the conditions where a pile foundation is more suitable than a shallow foundation?
 - (j) What do you understand by grip length?

PART - B

(Answer all five units, $5 \times 10 = 50 \text{ Marks}$)

UNIT – I

2 Explain in detail about plate load test in detail.

OF

3 Describe various methods of drilling holes for sub-surface investigations.

UNIT - IL

4 Describe Bishop's simplified method. What are the advantages over Swedish circle method.

OR

A dam of homogeneous section is 25 m high with upstream slope of 2.5 to 1.0 and downstream slope of 2 to 1. There is a 12 m long horizontal filter at the downstream end. Taking a free board of 3 m, determine: (i) Factor of safety of downstream slope under steady seepage condition. (ii) Factor of safety of upstream slope under sudden drawdown conditions.

UNIT – III J

6 Discuss Culmann's method for the determination of active earth pressure.

ЭR

Determine the passive pressure by Rankine's theory per unit run for a retaining wall 4 m high, with $i = 15^{\circ}$, $\phi^{I} = 30^{\circ}$ and $\gamma = 19 \, KN/m^{3}$. The backface of the wall is smooth and vertical.

UNIT – IV

8 How would you estimate the settlements of a foundation on cohesion less soils?

ΩR

A strip footing 2 m wide is to be laid at a depth of 4 m in a purely cohesive soil ($C = 150 \, KN/m^2$; $\gamma = 19 \, kN/m^3$. Determine the ultimate bearing capacity from: (i) Terzaghi's theory. (ii) Skempton's theory.

| UNIT – V |

A group of nine piles, 8 m long, is used for a column. The piles are 30 cm diameter with centre to centre spacing of 90 cm. The subsoil consists of clay with unconfined compression strength of 180 kN/m². Estimate the safe load. Take factor of safety as 3.0.

OR

11 Explain the various forces acting on a well foundation.