

D4 F		
RIL		
1/17		

B.TechIV-II Semester(ECE)

S. No.	Course Code	Subject	L	T	Р	С
1.	0000	MOOCS-II*	3	1	-	3
	15A04801	a. Advanced Digital Signal Processing-				
	15A04802	Multirate & Wavlet				
		b. Low Power VLSI Circuits & Systems				
2.		MOOCS-III *	3	1	-	3
	15A04803	a. Pattern Recognition & Applications				
	15A04804	b. RF Integrated Circuits			())
3.	15A04805	Comprehensive Viva Voce	-	- <	4	2
4.	15A04806	Technical Seminar	-	10	4	2
5.	15A04807	Project Work	-5	1	24	12
		Total:	6	02	32	22

² Theory + 1 Comprehensive Viva voce + 1 Technical Seminar + 1 Project work *Either by MOOCS manner or Self-study or Conventional manner

_____R15
JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B. Tech IV-IISem. (ECE)

L T P C 3 1 0 3

15A04801 ADVANCED DIGITAL SIGNAL PROCESSING-MULTIRATE & WAVELET (MOOCS-II)

Course Objectives:

- To study about the digital signal processing algorithms and multi rate signal processing
- To study about the power spectral estimation by using Barlett, Welch &Blackmann& Tukey methods.
- The study about the effects of finite word length in fixed-point dsp systems.

Course Outcomes:

After completion of the course students will be able to

- Get complete knowledge regarding various algorithms associated with Digital signal processing and multi rate signal processing.
- Verify the power spectral estimation by using Barlett, Welch &Blackmann& Tukey methods.
- Understand the effects of finite word length in fixed-point DSP systems by using ADC and FFT algorithms

UNIT – I

A Beginning with some practical situations, which call for multi-resolution/ multi-scale analysis - and how time-frequency analysis and wavelets arise from them. Examples: Image Compression, Wideband Correlation Processing, Magnetic Resonance Imaging, Digital CommunicationPiecewise constant approximation - the Haar wavelet, Building up the concept of dyadic Multi-resolution Analysis (MRA), Relating dyadic MRA to filter banks.

UNIT - II

A review of discrete signal processing, Elements of multi-rate systems and two-band filter bank design for dyadic wavelets. Families of wavelets: Orthogonal and bi-orthogonal wavelets, Daubechies' family of wavelets in detail, Vanishing moments and

R15

regularity, Conjugate Quadrature Filter Banks (CQF) and their design, Dyadic MRA more formally, Data compression - fingerprint compression standards, JPEG-2000 standards.

UNIT - III

The Uncertainty Principle: and its implications: the fundamental issue in this subject - the problem and the challenge that Nature imposes. Theimportances of the Gaussian function: the Gabor Transform and its generalization; time, frequency and scale - their interplay, The Continuous Wavelet Transform (CWT), Condition of admissibility and its implications. Application of the CWT in wideband correlation processing.

UNIT - IV

Journey from the CWT to the DWT: Discretization in steps, Discretization of scale - generalized filter bank, Discretization of translation - generalized output sampling, Discretization of time/ space (independent variable) - sampled inputs, Going from piecewise linear to piecewise polynomial, The class of spline wavelets - a case for infinite impulse response (IIR) filter banks, Variants of the wavelet transform and its implementation structures, the wave packet transform, Computational efficiency in realizing filter banks - Polyphase components, The lattice structure, The lifting scheme.

UNIT – V

An exploration of applications (this will be a joint effort between the instructor and the class). Examples: Transient analysis; singularity detection; Biomedical signal processing applications; Geophysical signal analysis applications; Efficient signal design and realization: wavelet based modulation and demodulation; Applications in mathematical approximation; Applications to the solution of some differential equations; Applications in computer graphics and computer vision; Relation to the ideas of fractals and fractal phenomena.

Textbooks:

- 1. Howard L. Resnikoff, Raymond O.Wells, "Wavelet Analysis: The scalable Structure Information," Springer, 1998 available in India edition.
- K. P. Soman, K. I. Ramachandran, "Insight Into Wavelets From Theory to Practice", Prentice Hall of India, Eastern Economy Edition, Prentice Hall of India Private Limited, M-97, Connaught Circus, New Delhi - 110 001, Copyright 2004, ISBN Number 81-203-2650-4.
- 3. Michael W. Frazier, "An Introduction to Wavelets through Linear Algebra", Springer, ISBN 3-540-780-75-0, c 1999.

R15

4. P. P. Vaidyanathan, "Multirate Systems and Filter Banks", Pearson Education, Low Price Edition, ISBN 81 – 7758 – 942 – 3.

MMM First Ranker Com

_____R15
JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

I T D

B. Tech IV-IISem. (ECE)

L T P C 3 1 0 3

15A04802 LOW POWER VLSI CIRCUITS AND SYSTEMS (MOOCS-II)

Course Outcomes:

After completion of this subject, students will be able to

- Under stand the concepts of velocity saturation, Impact Ionization and Hot Electron Effect
- Implement Low power design approaches for system level and circuit level measures.
- Design low power adders, multipliers and memories for efficient design of systems.

UNIT I

<u>Introduction</u>, Historical background, why low power, sources of power dissipations, low-power design methodologies.

MOS Transistors: introduction, the structure of MOS Transistor, the Fluid model, Modes of operation of MOS Transistor, Electrical characteristics of MOS Transistors, MOS Transistors as a switch.

UNIT II

MOS Inverters: introduction, inverter and its characteristics, configurations, inverter ratio in different situations, switching characteristics, delay parameters, driving parameters, driving large capacitive loads.

MOS Combinational Circuits: introduction, Pass-Transistor logic, Gate logic, MOS Dynamic Circuits.

UNIT III

Sources of Power Dissipation: introduction, short-circuit power dissipation, switching power dissipation, glitching power dissipation, leakage power dissipation.

Supply voltage scaling for low power: introduction, device features size scaling, architecture-level approaches, voltage scaling, multilevel voltage scaling, challenges, dynamic voltage and frequency scaling, adaptive voltage scaling.

www.FirstRanker.com

www.FirstRanker.com

R15

UNIT IV

<u>Minimizing Switched Capacitance:introduction, system-level approaches, transmeta's Crusoe processor, bus encoding, clock gating, gated-clock FSMs, FSM state encoding, FSM Partitioning, operand isolation, precomputation, logic styles for low power.</u>

UNIT V

Minimizing Leakage Power: introduction, fabrication of multiple threshold voltages, approaches for minimizing leakage power, Adiabatic Logic Circuits, Battery-Driven System, CAD Tools for Low Power VLSI Circuits.

www.FirstRanker.com

www.FirstRanker.com

R15

TEXT BOOKS

- 1. Ajit. Pal, Low power VLSI Circuits and systems, springer
- 2. Sung Mo Kang, Yusuf Leblebici, CMOS Digital Integrated Circuits, Tata Mcgrag
- 3. Neil H. E. Weste and K. Eshraghian, Principles of CMOS VLSI Design, 2nd Edition, Addison Wesley (Indian reprint).
- 4. A. Bellamour, and M. I. Elmasri, Low Power VLSI CMOS Circuit Design, Kluwer Academic Press, 1995.
- 5. Anantha P. Chandrakasan and Robert W. Brodersen, Low Power Digital CMOS Design, Kluwer Academic Publishers, 1995.

REFERENCES

 Kaushik Roy and Sharat C. Prasad, Low-Power CMOS VLSI Design, Wiley-Interscience, 2000.

R15

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B. Tech IV-IISem. (ECE)

L T P C 3 1 0 3

15A04803 PATTERN RECOGNITION & APPLICATIONS (MOOCS-III)

UNIT - I

Introduction: Feature extraction and Pattern Representation Concept of Supervised and Unsupervised classification Introduction to Application Areas.

UNIT - II

Statistical Pattern Recognition

Bayes Decision Theory, Minimum Error and Minimum Risk Classifiers, Discriminant Function and Decision Boundary Normal Density, Discriminant Function for Discrete Features, Parameter estimation

UNIT - III

Dimensionality Problem

Dimension and accuracy, Computational Complexity, Dimensionality Reduction, Fisher Linear Discriminant, Multiple Discriminant Analysis

Nonparametric Pattern Classification

Density Estimation, Nearest Neighbour Rule, Fuzzy Classification

UNIT - IV

Linear Discriminant Functions Separability, Two Category and Multi Category Classification, Linear Discriminators, Perceptron Criterion, Relaxation Procedure, Minimum Square Error Criterion, Widrow-Hoff Procedure, Ho-Kashyap Procedure, Kesler's Construction.

Neural Network Classifier Single and Multilayer Perceptron, Back Propagation Learning, Hopfield Network, Fuzzy Neural Network

IINIT – V

Time Varying Pattern Recognition

First Order Hidden Markov Model, Evaluation, Decoding, Learning

Unsupervised Classification

Clustering, Hierarchical Clustering, Graph Based Method, Sum of Squared Error Techniquelterative Optimization

www.FirstRanker.com

www.FirstRanker.com

R15

Textbooks:

- **1.** Richard O. Duda, Peter E. Hart and David G. Stork, "Pattern Classification", JohnWiley& Sons, 2001.
- 2. Earl Gose, Richard Johsonbaugh and Steve Jost, "Pattern Recognition and Image Analysis", Prentice Hall, 1999.

MMM/FilestRanker.com

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR

B. Tech IV-IISem. (ECE)

L T P C 3 1 0 3

R15

15A04804 RF INTEGRATED CIRCUITS (MOOCS-III)

UNIT - I

Introduction RF systems – basic architectures, Transmission media and reflections, Maximum power transfer , Passive RLC Networks, Parallel RLC tank, Q, Series RLC networks, matching, Pi match, T match, Passive IC Components Interconnects and skin effect, Resistors, capacitors Inductors

UNIT - II

Review of MOS Device Physics - MOS device review, Distributed Systems, Transmission lines, reflection coefficient, the wave equation, examples, Lossy transmission lines, Smith charts – plottingGamma, High Frequency Amplifier Design, Bandwidth estimation using open-circuit time constants, Bandwidth estimation, using short-circuit time constants, Rise time, delay and bandwidth, Zeros to enhance bandwidth, Shunt-series amplifiers, tuned amplifiers, Cascaded amplifiers

UNIT - III

Noise - Thermal noise, flicker noise review, Noise figure, LNA Design, Intrinsic MOS noise parameters, Power match versus, noise match, large signal performance, design examples & Multiplier based mixers. Mixer Design, Subsampling mixers.

UNIT - IV

RF Power Amplifiers, Class A, AB, B, C amplifiers, Class D, E, F amplifiers, RF Power amplifier design examples, Voltage controlled oscillators, Resonators, Negative resistance oscillators, Phase locked loops, Linearized PLL models, Phase detectors, charge pumps, Loop filters, and PLL design examples

UNIT - V

Frequency synthesis and oscillators, Frequency division, integer-N synthesis, Fractional frequency, synthesis, Phase noise, General considerations, and Circuit examples, Radio architectures, GSM radio architectures, CDMA, UMTS radio architectures

Textbooks:

- The design of CMOS Radio frequency integrated circuits by Thomas H. Lee Cambridge university press, 2004.
- 2. RF Micro Electronics by BehzadRazavi, Prentice Hall, 1997.