Code: 14E00205

MBA II Semester Supplementary Examinations December/January 2017/2018
OPERATIONS RESEARCH
(For students admitted in 2014, 2015 \& 2016 only)
Time: 3 hours
Max. Marks: 60

SECTION - A

(Answer the following: ($05 \times 10=50$ Marks)

1 What are the various applications of operations research? Discuss.

OR

Find the optimal solution for the given unit cost matrix.

	P	Q	R	S	Supply
A	5	8	10	14	50
B	7	10	14	19	80
C	10	15	8	6	70
Demand	40	60	75	25	200

Four men are available to do four different jobs. From past records, the time (in hours) that each man takes to do a job is known and is given in the following matrix.

	P	Q	R	S
A	2	3	4	5
B	4	6	8	10
C	7	10	13	16
D	11	15	19	23

Find the assignment of men to jobs that will minimize the total time taken.
5 The data given below indicates the processing time (in hours) of five jobs A, B, C, D and E on two machines M_{1} and M_{2} with sequence as $M_{1} \rightarrow M_{2}$ for all jobs.

	A	B	C	D	E
M_{1}	4	13	8	11	4
M_{2}	8	5	10	15	7

Find the sequence of jobs to be performed so as to minimize total time and also find total elapsed time.
OR

Solve the game for the given payoff matrix.

	B_{1}	$\mathrm{~B}_{2}$	$\mathrm{~B}_{3}$	$\mathrm{~B}_{4}$
$\mathrm{~A}_{1}$	2	2	3	-2
$\mathrm{~A}_{2}$	4	3	2	6

Contd. in page 2
www.FirstRanker.com
Code: 14E00205
$7 \quad$ Explain in detail queuing system with examples.

OR

What is replacement? Describe some important replacement situations and replacement policies.
OR
Construct network and compute earliest and latest times. Also identify critical path.

Activity	$1-2$	$1-3$	$2-4$	$3-4$	$2-5$	$4-5$
Optimistic time	5	12	15	2	8	21
Most likely time	7	13	18	3	10	26
Pessimistic time	12	17	21	5	14	35

SECTION $-\mathbf{B}$
(Compulsory question, $01 \times 10=10$ Marks)

Case Study:

A company is making two products A and B. The cost of producing one unit of product A and B is Rs. 60 and Rs. 80 respectively. As per agreement, the company has to supply at least 200 units of product B to its regular customers. One unit of product A requires one machine hours whereas product B has machine hours available abundantly within the company. Total machine hours available for product A are 400 hours. One unit of each product A and B requires one labor hour each and total of 500 labor hours are available. The company wants to minimize the cost of production by satisfying the given requirements. Formulate the problem as a LPP.

