

www.FirstRanker.com

www.FirstRanker.com

Code No: 113BN

(,)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November - 2015 MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE

(Common to CSE, IT)

Max. Marks: 75 Time: 3 Hours

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit.

Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

(25 Marks)

Verify whether the following inference is valid or not. 1.a)

> : If today is 2nd October then today is Gandhi's birthday. Statement 1

: Today is not 2nd October Statement 2

: Today is not Gandhi's birthday Inference

[2M]

[3M] Express $P \leftrightarrow Q$ in terms: b) i) Implication and AND

ii) In terms of AND, OR, NOT

iii) In terms of EX-OR.

[2M]Define group. c)

Let $X = \{1, 2, 3, 4\}$ and a partition of X is given as $\{\{1,2\}, \{3,4\}\}$. Find the d) corresponding equivalence relation for given partition. [3M]

[2M]List the 3-combinations of {3a, 2b, 4c} e)

Enumerate the number of binary numbers with seven 1's and five 0's. [3M]f)

Find the general solution for the recurrence. g) [2M]

 $a_n = a_{n-1} + f(n), n \ge 0$ and a_0 is given initial condition Find the co-efficient of X^9 in $(1+x^3+x^8)^{10}$. [3M]h)

Find the cut vertices and cut edges in the following graph (figure 1). [2M]i)

Figure: 1

How many regions will be there in a tree with 'n' vertices? Give explanation in j) [3M]one or two lines.

PART-B

(50 Marks)

Obtain PCNF and PDNF by using truth table for the formula. 2.a) $(P \rightarrow Q) \vee (Q \hookrightarrow R)$

Using automatic theorem proving, show that $(P \rightarrow Q)$, $\sim Q$ logically implies $\sim P$. b)

[5+5]

OR

Show that $\sim (P \rightarrow Q) \rightarrow \sim (R \vee S)$, $((Q \rightarrow P) \vee \sim R)$, R logically implies $P \leftrightarrow Q$. 3.a)

Show that the set of following premises are inconsistent. b) Premise 1

[5+5]

Premise 2

: If today is 1^{st} April then today is fool's day If today is 1^{st} April then $2+2\neq 8$

Premise 3

If today is fool's day then 2+2=8

Today is 1st April. Premise 4

Let $X = \{ball, bed, dog, let, egg\}$ and R is a relation defined on X as $R = \{(x, y) | x\}$ 4.a) and y contains some common letter}. Show that R is compatibility relation and also find maximum compatibility blocks for R.

b) [5+5]

12, 24, 36}.

()

OR

Consider the following Hasse diagram shown in figure 2 for the relation "divides" 5.a) and find the upper bounds and lower bounds for: i) $\{2, 3\}$ ii) $\{3, 4, 6\}$.

Figure: 2

Verify the following system is group or not $G = \{1, 2, 3, 4, 5\}$ and the operation [5+5] $+_6$. Where $+_6$ represents additive module 6.

In how many ways can the letters of English alphabet be arranged so that there are 6.aexactly 6 letters between the letters b and c.

How many different outcomes are possible by tossing 15 similar coins? [5+5]b)

OR

Enumerate the number of non-negative integral solutions to the in equality 7.a) $X_1+X_2+...+X_5\leq 12$.

Find the co-efficient $X^5Y^5Z^{10}$ in the expansion $(2X+5Y-3Z)^{20}$. [5+5]b)

Solve the recurrence relation 8. [10] a_n -5 a_{n-1} +8 a_{n-2} -4 a_{n-3} = 0, where $n \ge 3$ and a_0 = 1, a_1 = 1, a_2 = 2.

- 9.a) Solve the recurrence relation $a_n = a_{n-1} + 1/n$ (n+1) where $a_0 = 2$.
 - b) Write the generating function for the following sequence $B = \{b_r\}^{\alpha}_{r=0}$ where

[5+5]

$$b_r = \begin{cases} 1 & \text{if } 0 \le r \le 4 \\ 2 & \text{if } r = 5 \\ 0 & \text{if } r \ge 6 \end{cases}$$

10. Consider the following Graph (Figure 3).

Figure: 3

With respect to the above graph decide whether the each of the following paths are simple, closed, circuit and cycle.

- a) a-b-c-d-b-g-a
- b) a-b-c-e-f

()

(-)

- c) g-b-d-f-g
- d) a-b-d-e
- e) a-b-d-e-d-b-a.

[2+2+2+2+2]

OR

11.a) Verify whether the following graph (Figure 4) contains Hamiltonian cycle or not.

Figure: 4

b) Show that the complete graph K_n is planar if $n \le 5$.

[5+5]

---00000---