

#### www.FirstRanker.com

#### www.FirstRanker.com

Code No: 113AH

**R13** 

# JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November - 2015 MATHEMATICS-III

(Common to EEE, ECE, EIE, AGE, ETM)

Time: 3 Hours Max. Marks: 75

**Note:** This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

|      | PART- A                                                                                   | (25 Marks) |
|------|-------------------------------------------------------------------------------------------|------------|
| 1.a) | Determine the nature of the point $x=0$ for the equation                                  |            |
|      | $x^{2}(x^{2}+1)y''+(x^{2}-1)y'+2y=0.$                                                     | [2M]       |
| b)   | Find the series solution of the equation $y'' - y = 0$ .                                  | [3M]       |
| c)   | Express $2 - 3x + 4x^2$ in terms of Legendre polynomial.                                  | [2M]       |
| d)   | Express $J_3(x)$ in terms of $J_0$ and $J_1$ .                                            | [3M]       |
| e)   | Prove that $f(z) = \overline{z}$ is not analytic at any point.                            | [2M]       |
| : f) | how that the function $f(z) = \sin x \cosh y + i \cos x \sinh y$ is continuous as well as |            |
| ,    | analytic every where.                                                                     | [3M]       |
| g)   | State the Cauchy's Residue theorem.                                                       | [2M]       |
| h)   | Expand $\log z$ by Taylor's series about $z = 1$ .                                        | [3M]       |
| i)   | Define conformal transformation.                                                          | [2M]       |
| j)   | Find the points at which $w = \cosh z$ is not conformal.                                  | [3M]       |
|      |                                                                                           |            |

PART-B (50 Marks)

- 2.a) Obtain the series solution of the equation y'' + xy' + y = 0
- b) Find the series solution of 4x y'' + 2 y' + y = 0. [4+6]

OR

- 3.a) Solve in series the equation y'' + xy = 0
  - b) Solve in series the equation  $(1 x^2) 2xy + n(n+1)y = 0$  about x = 0. [4+6]
- 4.a) Prove that  $nP_n = (2n-1) \times P_{n-1} (n-1) P_{n-2}, n \ge 2$
- b) State and prove generating function of Bessel's function. [5+5]

OR

5.a) Prove that  $\int_{-1}^{1} P_n(x) P_m(x) dx = 0$ , if m  $\neq$  n, 2/(2n+1) if m = n.

- b) Prove that  $J_0^2 + 2(J_1^2 + J_2^2 + J_3^2 + \dots) = 1.$  [5+5]
- 6.a) Find the analytic function whose real part is  $u = e^{2x}(x \cos 2y y \sin 2y)$ .
- b) Evaluate  $\int \text{Re } z \, dz$  where C is the shortest paoth from 1±1 to 3 ± 2i. [5±5]

OR

- 7.a) State and prove Cauchy's integral theorem.
  - b) Evaluate using Cauchy's integral formula  $\int_{c} \frac{e^{zz}}{(z-1)(z-2)} dz$ , where C is the circle |z| = 3. [5+5]



## www.FirstRanker.com

www.FirstRanker.com

- 8.a) Express  $f(z) = \frac{z}{(z-1)(z-3)}$  in series of positive and negative powers of (z-1).
  - b) Evaluate  $\int_{0}^{2\pi} \frac{1}{(5-3\cos\theta)} d\theta$  using residue theorem. [5+5]

## OR

- 9.a) Give two Laurent's series expansions in powers of z for  $f(z) = \frac{1}{(1-z)z^2}$  and specify the region in which these expansions are valid.
  - b) Evaluate  $\int_C \frac{z^2 + 2z 2}{z(z 4)(z 1)} dz$  where C is |z| = 1.5. [5+5]
- 10.a) Under the transformation w = 1/z find the image of the circle |z 2i| = 2.
  - b) Find the bilinear transformation which maps the points (-1,0,1) into the points (0, i, 3i)

## OR

- 11.a) Find the image of the region in the z-plane between the line y = 0 and  $y = \pi/2$ Under the transformation  $w = e^z$ .
  - b) Show the bilinear transformation preserves the cross ratio. [5+5]

---00000---