

R13

Code No: 114CV

amplifiers.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY, HYDERABAD B.Tech II Year II Semester Examinations, May - 2015 ELECTRONIC CIRCUIT ANALYSIS

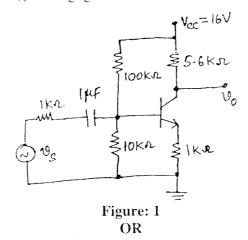
(Common to ECE, EIE)

Time: 3 Hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART - A


(25 Marks) [2M] State and explain Miller's theorem. 1.a) How are amplifiers classified based on their duration of transistor conduction? b) [3M][2M]Write the significance of Gain- Band width product of an amplifier. c) List out the elements of a CE amplifier which influence its lower cut-off d) frequency. What is the effect of negative feedback in current series type feedback amplifier? e) [2M] [3M]f) State Barkhausen criteria for oscillations. List the merits and demerits of push-pull configuration in power amplifiers. [2M] g) What are the heat sinks? Why are they needed? [3M] h) Define Q-Factor of a tuned amplifier. What is its ideal value? [2M]i) Differentiate between synchronous tuning and staggered tuning of cascaded tuned j)

PART - B

(50 Marks)

[3M]

- 2.a) Draw the circuit diagram of Darlington amplifier and derive the expressions for overall current gain and overall input impedance.
 - b) Compute the voltage gain, current gain and input impedance for the amplifier circuit shown in figure 1. Assume h_{ie} =1.1k Ω and h_{fe} =60. Also assume that the effects of h_{re} and h_{oe} are negligible. [5+5]

www.FirstRanker.com

- 3.a) Draw the circuit diagram, equivalent circuit of an emitter follower amplifier and derive the expression for its voltage gain, current gain and input impedance.
 - b) For the CE-CC amplifier cascade shown in figure 2, obtain overall voltage gain.

 Assume typical values of h-parameters. [5+5]

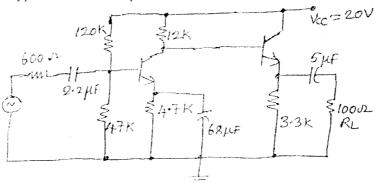


Figure: 2

- 4.a) Discuss the effect of coupling and bypass capacitors on the frequency response of a CE amplifier.
 - b) Draw the circuit diagram of a MOS common source amplifier and explain its operation. Derive the expressions for voltage and current gains based on its equivalent circuit. [4+6]

OR

- 5.a) Draw the hybrid $-\pi$ equivalent circuit of a BJT in CE configuration. Obtain its conductance of g_{ee} and g_{be} in terms of its low frequency h- parameters.
 - b) Draw the MOS small signal model, circuit diagram and equivalent circuit of MOS CS amplifier. [5+5]
- 6.a) Establish the conditions for oscillations in a BJT based RC phase shift oscillator.
 - b) Draw the block schematics of voltage series and current shunt feedback amplifiers and explain the operation. [5+5]

OR

- 7.a) Establish the gain and phase conditions for oscillations in a colpitts oscillator.
 - Calculate the closed loop gain A_{CL} for a voltage series negative feedback amplifier if its open loop voltage gain A_{ν} and feedback factor β are listed as 10^5 and 0.01 respectively. Calculate A_{CL} if A_{ν} increases by 40%. [6+4]
- 8.a) Show that the maximum conversion efficiency in a class B power amplifier is 78.5%.
 - b) Draw the circuit diagram of a transformer coupled class A power amplifier and explain its operation. [5+5]

OR

- 9.a) Draw the circuit diagram of a class B complementary- symmetry power amplifier and explain its operation. Obtain the expressions for conversion efficiency and collector circuit efficiency.
 - b) Explain how temperature related problems are handled in power amplifiers. [6+4]

www.FirstRanker.com

www.FirstRanker.com

Draw the circuit diagram, equivalent circuit of a capacitively coupled single tuned amplifier and derive the expression for Q- Factor, voltage gain and band width.

OR

- 11.a) Discuss about the need and procedure for ensuring stability in a tuned amplifier.
 - b) An RLC circuit used as load in a tuned amplifier has $Z_{max} = 70 k\Omega$ at f=100kHz. The Q of the tuned circuit is100. Compute the frequency at which the impedance becomes $50 k\Omega$. [5±5]

----00000----