

www.FirstRanker.com

www.FirstRanker.com

R13

Code No: 114AE

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year II Semester Examinations, May-2015 ELECTRONIC CIRCUITS

(Electrical and Electronics Engineering)

Time: 3 Hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

Part- A

		(25 Marks)
1.a)	Classify amplifiers.	[2M]
b)	What are the general characteristics of negative feedback amplifiers:	? [3M]
c)	Discuss the effect of bypass capacitor on low frequency response	[2M]
d)	Explain about Hybrid- π model.	[3M]
e)	What are the other names for monostable multivibrator?	[2M]
f)	State Clamping circuit theorem.	[3M]
g)	Discuss the importance of heat sinks.	[2M]
h)	When does low pass circuit act as an integrator?	[3M]
i)	What do you mean by turn on time of a transistor?	[2M]
j)	Distinguish between Avalanche breakdown and Zener breakdown	[3M]

Part-B

(**50 Marks**)

- 2.a) Draw the CC amplifier and derive the expression for A_I, R_I, A_V, Y_O.
 - b) A CE amplifier is drawn by a voltage source of internal resistance R_S = 800 ohms and load impedance is a resistance R_L = 1000 ohms. The h-parameters are h_{ie} =1.0K ohms, h_{re} = 2 ×10⁻⁴, h_{fe} = 50 and h_{oe} = 25 μ A/V. compute A_L , R_L , A_V , R_L and R_o using exact analysis. [5+5]

OR

- 3.a) Explain the principle of negative feedback in amplifiers. Show quantitatively the effect of negative feedback on (i) Gain (ii) Stability (iii) Noise (iv) Distortion.
 - b) Discuss the effect of current-series negative feedback on input and output impedance. [5+5]
- 4. Derive all components in the Hybrid- π model in terms of h parameters in CE configuration. [10]

OR

- 5.a) Derive the expression for lower 3dB frequency of a CE amplifier due to C_e.
- b) For CE amplifier calculate the mid frequency voltage gain and lower 3db Frequency. The transistor has h-parameters of $h_{ie} = 10$ K ohms, $h_{fe} = 400$. The circuit details are $R_S = 600$ ohms, $R_I = 15$ K, $R_2 = 2.2$ K and $C_E = 50 \mu$ F. [5+5]

www.FirstRanker.com

www.FirstRanker.com

6.a) Derive the expressions for UTP and LTP of a Schmitt trigg	6.a)	Derive the	expressions for	· UTP and	LTP	of a	Schmitt	trigge
--	------	------------	-----------------	-----------	-----	------	---------	--------

b) Show that an Astable Multivibrator can be used as a voltage to frequency converter. [5+5]

OR

- 7.a) With help of a neat circuit diagram and waveforms explain the operation of a transistor clipper.
- b) Design and draw a diode clipper circuit to clip the given input voltage of 10sinwt at +3Vand -5V level. Sketch the waveforms neatly. [5+5]
- 8.a) Describe the operation of Class B Push pull amplifier and show how even Harmonics are eliminated?
 - b) What are the draw backs of transformer coupled power amplifier. [5+5]

OR

- 9.a) Derive the expression for the percentage tilt of the output of high pass circuit with large time constant excited by a symmetrical square wave with zero average value.
- b) 1 kHz square wave output from an amplifier has rise time $t_r = 350$ ns and tilt=5%. Determine the upper and lower 3-db frequencies. [5+5]
- 10.a) Explain the operation of transistor switch in saturation.
 - b) For a common emitter amplifier, $V_{cc} = 15V$, $R_c = 1.5k\Omega$ and $I_B = 0.3$ mA.
 - i) Determine the value of $h_{\text{FE}(\text{min})}$ for saturation to occur.
 - ii) If R_c is changed to 500Ω will the transistor be saturated. [5+5]

OR

- 11.a) Explain in detail about piece-wise linear diode characteristics.
 - b) Discuss in detail about breakdown voltages of a transistor. [5+5]

---000---