www.FirstRanker.com | ::
:: | | | | | A G/14013 | 9. 5. 6 | <u> </u> | ž. | |---------------------------------------|----------------|--|---|--|--|--|--|---------| | | V ^e | Code No: 123 | | | • | | R15 | i | | | | JAWA
B | HARLAL NE
.Tech II Year | HRU TECHNO
I Semester Exa | LOGICAL UNI
minations, Nover | VERSITY HYD | DERABAD | | | · · · · · · · · · · · · · · · · · · · | | Time: 3 Hour | | FLUID : | MECHANICS
on to CE, CEE) | Max, N | | , | | .// | | Part A
Part B.,Part B. | is compulsory consists of 5 U | nits. Auswer any | s A and B.
marks. Answer a
one full question
ay have a, b, c as | Il questions in Pa | 2 |).
: | | | | 1.a) What is | s vapour pressi | PAI | RT - A | | (25 Marks) | | | ;**
:: | | b) List ou e)What d d)Disting e) Disting f) Explair g) What is | t different fluid
lo you mean by
guish fluid Stati
guish between n
a about Navier-
s Vonkarman n | I properties along
1-D,2-D,and 3-J
cs, Kinerhatics a
lotch and weir.
Stokes equation. | nd Dynamies. | icance. | [2]
[3]
[2]
[2]
[3]
[2] | | |
Dr | | f): Explain
f): Compar | r about bounda
r Reynolds nun
re velocity pro: | ry layer in transit
ber. [[]] [[]
files for laminar | and turbulent flow | v_in pipes: | [3]
[2]
[3] | | | | | | | PAR | AT - B | | (50 Marks) | | | | e ⁿ | b) "An oil diamete | of viscosity 5
of shaft is 0.5 | emperature on vise poise is used on and it rotates mm. The thickness | Explain the imporscosity. of water as for lubrication be at 200 rpm. Calcess of the oil film | nd that of air?
etween a shaft ,
culate the power! | and cleave The | | | [: | | b) Find the with 4 r | total pressure | or the depth of control of the centre of the water w | OR centre of pressure in in; f pressure on a vo | i ^{mi} fir:
ertical gate of the | size 4 m × 6 m | | | : | | iii) Lami | dy flow;:
uniform flow,
inar flow, and | | P6 | F6 | P6 | | | : | | b) The water the by | . Find the pro | wough a taper part the lower at the lo | ipe of length 50 to at the rate of 60 wer lend if the | litres/s The nin | e hasua slope of | | | | | | | | | | | | | | | P6 | PE | FE | FE | P6 | P6 | | | | | | | | | | | | ## www.FirstRanker.com www.FirstRanker.com | | | | | | F.C | , , , , , | | | | | | |--|--|--|---|---|--|-----------|--|--|--|--|--| | 5.a)
b). | Define stream line, p
these lines.
A 75 cm diameter
sp.gr. 0.79 through a
velocity through the
direction of the force | unifor <u>m</u> pipe be
un angle of 120 ⁰ i
bend are 90 KPa | nd turns the d
n the horizontal
and 3 m/s resp | irections of flov
plane: The cons
pectively. Find th | v of gasoline of
tant pressure and
te magnitude and | [| | | | | | | | Integrate three-dimer
each one of them yie
A pipe of drameter 2
has a pressure of 15.0
a datum of 5 m below | lds Bernoulli's equ
00 mm. cönveys a
70 kPa at a certain
v the pipe. | uation | 250 lifres of wate | er per minute and | <u> </u> | | | | | | | | Differentiate between i) Bernoullis equation ii) Velocity head and iii) Energy equation a The centre line of a 1-1 and 2-2 are 5 m ² | n:
n and Eulers equat
Pressure head
and momentum eq
pipe conveying w
and 2 m ² respectiv | uation. vater is horizont | re intensity and v | elocity at section | | | | | | | | 8.a) | 1-1 are 39.25 kPa a section 2-2 Tgnore lo | sses. | | | [5+5] | | | | | | | | b)
9.a)
b) | methods that can be to
How will you determ
or on the verge of ser
 | ised to prevent septine whether a bour
paration? gand friction drag
undary layer? Exp | oaration. ndary rayor flow OR [[]] J. January rayor flow J. January rayor flow J. J. J. J. J. J. J. J. J. J | is attached flow | or detached flow [5+5] [:::::::::::::::::::::::::::::::::::: | Fig. | | | | | | | 10.a) Show that the loss of head due to sudden expansion in pipe line is a function of velocity head. b) The rate of flow of water through a horizontal pipe is 0.3 m³/s. The diameter of the pipe is suddenly enlarged from 250 mm to 500 mm. The pressure intensity in the smaller pipe is 13.734 N/cm². Determine: (i) loss of head due to sudden enlargement, (ii) pressure intensity in the large pipe and (iii) power lost due to enlargement. [5+5] | | | | | | | | | | | | | b) | Explain the terms: (i) pipe. Three pipes of length 200 mm respectively connected to two tarms of a single produced in the diameter of a single produced. | s 800 m, 600 m a
y are connected
iks, whose water
rate of flow of w | nd 300 m and of in scries. The surface levels atter through the | of diameter 400 m
ends of the co
are maintained a
e pipes-if.f = 0.0 | nm, 300 mm and impound pipe is t a difference of 05. What will be s the three pipes. | F1 | | | | | | | [5+5]
ooOoo | | | | | | | | | | | | | | | PE. | F.G. | F.E. | P6 | | | | | | |