

www.FirstRanker.com

www.FirstRanker.com

ÞÃ	P6 P6 PGAGIADIO P6 P6 F								
	Code No: 133AV JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD								
B.Tech II Year I Semester Examinations, November/December - 2017 FLUID MECHANICS - I									
Pô	Time: 3 Hours (Common to CE, CEE) (Max. Marks: 75)								
	Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.								
P6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
	1.a) State and explain Pascal's law. [2] b) Differentiate centre of gravity and centre of pressure. [3] c) Differentiate fluid statics and kinematics. [2] d) State and explain continuity equation. [3]								
P6	Distinguish between surface and body forces. Describe the classification of orifices: Explain how flow takes place in closed conduits. Explain HGL and TEL with a neat sketch. Give Navier Stoke's equation. Distinguish between drag and lift. [2] [3] [2] [3] [3]								
P6	Define Viscosity, Surface tension and Vapor Pressure and explain their influence on fluid motion.								
	b) An open tank contains water up to a depth of 1.5 m and above it an oil of sp.gr.0.8 for a depth of 2 m. Find the pressure intensity: (i) at the interface of the two liquids, and (ii) at the bottom of the tank. [5+5] OR								
P6	3.a) Distinguish between: i) Specific weight and specific volume, ii) density and relative density and iii) adhesion and cohesion.								
	b) 10 m^3 of carbon tetrachloride reduces in volume by 0.11 percent when subjected to certain pressure increase. If the bulk modulus of the fluid is $1.145 \times 10^6 \text{ N/m}^2$, the original specific weight is 15,750 N/m ³ , calculate the increase in pressure and								
P6	4.a) Distinguish between: (i) Steady flow and un-steady flow, (ii) Uniform and non-uniform flow, (iii) Compressible and incompressible flow, (iv) Rotational and								
	Irrotational flow (x) Laminar and turbulent flow. A 100 mm diameter pipe carries oil of specific gravity 0.8 which flows with a velocity of 2 m/s. At another section of the pipe, the diameter is 50 mm. Determine the mass flow rate of oil through the pipe and velocity of oil at the								
P6	smaller section. P6 P6 P6 [5+5]								

www.FirstRanker.com www.FirstRanker.com

P6	P6	P6 '	P6	P6	P6	P6,		
P6	b) Examine incompres	whether the formsible two-dimental u = 2x + y and v	od velocity potential pollowing velocity sional flow. If so, $x = x^{-2y}$. Derive an expression	state whether th		ial of i+5] 		
P6	Venturimeter. An orifice-meter with orifice diameter 15 cm is inserted in a pipe of 30 cm diameter. The pressure gauges fitted upstream and downstream of the orifice meter give readings of 14.715 N/cm² and 9.81 N/cm² respectively. Find the rate of flow of water through the pipe in liters/s. Take Cd = 0.6. 7.a) Derive Bernoulli's equation for the flow of an incompressible frictionless fluid							
P6	from consideration of momentum. A 45° reducing bend is connected in a pipe line, the diameters at the inlet and outlet of the bend being 40 cm and 20 cm respectively. Find the force exerted by water on the bend if the intensity of pressure at inlet of bend is 21.58 N/cm². The rate of flow of water is 500 liters/s. What do you mean by equivalent pipe. Obtain an expression for equivalent pipe. A pipe of diameter 300 mm and length 1000 m connects two reservoirs, having difference of water levels as 15 m. Determine the discharge through the pipe. If an							
P6	additional length of neglect no Show the velocity	Il pipe of diamete the existing pip ninor losses. at the loss of hea head.	as 15 m. Determiner 300 mm and lerue, find the increased due to sudden cs of laminar and	expansion in pi	ached to the last rge. Take $f = 0.0$	000 m 02 and 5+5]	Tananana, and a same a	
P6	10.a) What is gradient b) Explain	meant by bound on boundary layer the factors affect	dary layer separ	er thickness:	pint of separation	[5+5] L.		
P6	P6	,P6	00000	- P6	P6	P6	-	
P6	P6	P6 •	P6	P6	P6 •	P6		