www.FirstRanker.com www.FirstRanker.com 15AG1/A0301 | Code No: 1234 | AN ESTE | I MTD CYTY C T O | | | R15 | | |--|---|--|--|--|----------------------------------|-----| | JAWAHA
B.Teo | RLAL NEHRU
Ch II Year I Sen
PRO
(Common to | nester Examina
DBABILITY A | GICAL UNIV
tions, Novemb
ND STATISTI
MCT, AME, MI | er/December -
CS | ERABAD
2016 | | | Time: 3 Hours | X - 4X - X - X - X - X - X - X - X - X - | ***** | **** | | ax. Marks: 7 | 5 | | Part A is
Part B | estion paper cont
compulsory wh
consists of 5
estion carries 10 | ich carries 25 m
Units. Answer
marks and may | larks. Answer al
any one ful
have a, b, c as s | l question fro | art A.
m each uni | t. | | | | PART | '- A | | | | | b) Prove tha | the expected nut | nder the normal | curve is unity | • | [2] | ė | | d) Define councorrela e) Define Ty f). "A sample | ovariance of tw
ted.
pe-I and Type-I
of size 10 dray | wo random va
I errors.
wn from a norn | riables. When | are two rand | om variables [3] [2] | 5 | | g) Define tra h) Explain th i) Write dow | reasonable to as
nsient state and
e operating char
on the Chapman- | ssume that the r
steady state in a
acteristics of a c
Kolmogorov eq | neam of the pop
queue model.
queueing system
uations. | ulationijs 30? I | Use 1% LOS.
[3]
[2]
[3] | m' | | j) —If the trans | iii
ition-probability | matrix of a Ma | arkov ehain is | $ \begin{array}{ccc} 0 & \begin{array}{ccc} & & \\ & & \\ & \\ & \\ & \\ & \\ & \\$ | steady state | Pé | | distribution | 1. | PART- | | | [3] | | | 2.a) A random Find the pr b) Explain Bin its mean an | obability mass fi
nomial distributi | unction of X and | d the expected v | alue of X. | | PE | | 3.a)Define math
b)Explain ne
68.22 inche
100 varietie | nematical expectional distributions with a variance s, would you ex | ation. Prove the
on. If the me
nce of 10.8 in | an height of ches, how man | sorghum varie | eties tobe | P.S | | P6 | | PS | FE | Fi | F6 | Pë | | 4.a), | Obta | in the | rank co | rrelati | on soef | ficient | for the | follow | ing da | ta::::: | •×
•× | **** | **** *** | |--|-------------------|--|------------------|------------------|---------------------------------|--|---------------------|---|-------------------|---------------------------------------|--------------|---|--| | | X | 68 | 64 | 75 | 50 | 64 | 80 | 75 | 40 | 55 | 64 | | | | | Y | 62 | 58 | 68 | 45 | 81 | 60 | 68 | 48 | 50 | 70 | | | | b) | The | joint di | istributi | ion of. | X and Y | ' is giv | en by j | f(x,y) | =4x | ve-(x2 | $+y^{2}); x$ | $x \ge 0, y \ge 0.$ | • | | **** | Find
inder | | | l dens | sity fur | | of X | and Y | and | test w | hether
: | X and Y are $[5+5]$ | | | 5.a) | Mear | n mark | s in A | =39.5; | Mean | mark | s in B | =47.5; | Stand | lard de | viation | examination: of marks in | | | | | | | | | | | | | | | tion between and explain | | | | why | there | are tw | o reg | ression | equat: | ions. | Give tl | ne esti | mate: | of mar | ks in Brifor | ···· | | | candi | dates v | who sec | cured 5 | 0 mark | s in A. | | | | | | | | | b) | | | | | es are d | | | | | | | | | | | f(x) | $= \begin{cases} 4 a \\ 0 \end{cases}$ | $(x 0 \le oth)$ | x≤r
erwise | , f (y | $=$ $\begin{cases} 4 & 0 \\ 0 & 0 \end{cases}$ | by 0
) oti | ≤ y ≤ s
herwise | . If <i>l</i> | J = X | + Y an | d V = X - Y | | | X + + x + x + x + x + x + x + x + x + x |
iiithen s | show H | nat Cov | (U,V) | $=\frac{b-a}{b-a}$ | x
** | 21 · · | * | | **** ***
** * ***
*** *** | | [5+5] | **** | | | | | | | | | | | | | | | | | 6.a) | Fit a l | Poissor | n distril | oution | to the f | ollowi | ng data | and te | st for t | he goo | dness c | of fit: | | | | | | | X. | | 0 | 1 | 2 | 3 | | | | | | ****
* * * *
* * * | | ************************************** | ****** | Fre | quëncy | 24 | 15::: | 6 | 5 | * * * * * * * * * * * * * * * * * * * | : | NAT WAR | ************************************** | | b) | Two
values | | endent | sample | es of s | izes 8 | and 7 | items | respe | ctively | had th | ne following | | | | | | | | | | | , | · | , | | | | | **** x | | mple I | | 11 | 13 | 11 | 15 | 9 | 12 | 14 | | **** | **** X* | | · · · · · · · · · · · · · · · · · · · | :: Sai | nple H | 1-11:-9 | 11 | 10 : | : 13 | 9 | <u> </u> | 10 | | ; | 9 X + N + N + N + N + N + N + N + N + N + | * | | | Is the | differe | nce bet | tween | the mea | ans of t | he sam
OR | ple sig | nificar | nt? Tes | t at 5% | LOS. [5+5] | | | 7.a) | Explai | in the | concep | ts of c | onfider | nce int | ervals | and the | e stanc | lards e | rror of | an estimate. | | | **** ; , , , , , , , , , , , , , , , , , | The n
::160 ar | nean .a
nd 100. | ndvar
respec | iance
tively. | of rand | lom saute the | mple
95% c | of64
onfide | observ
nce lin | ations.
nits for | were o | computed as tion mean. | | | b) | Two r | andom | sampl | es are | drawn | from t | two po | pulatio | ns and | the fo | ollowin | g results are | | | | obtain | ed: | | | | | | | | | | | | | | | Sampl | e I 1 | 6 1 | 7 18 | 19 | 20 | 21 | 22 | 23 | 24 | | | | 2 | | Sampl | e II 1 | 2 1 | | 22 | 27 | 23 | 32 | | | *** x x *** | **** | | **** ****
* *** | | | | | | | | t wheth | ner the | two p | pulatio | ons have the | | | | same v | arianc | e at 5% | level | of sign | ificanc | e. | | | | | [5+5] | X + + 2.
4
X + < 2.
2. | | | **** **
* * * *
**** **** | , | ****

* |
:: | | **** ****
**** * ****
* * * * * | | **** | **** ***
**** **** | | ÷ ' | | ; | **** | | , ×*** | | : | • * * * | | * *** | | | . *x, | ## www.FirstRanker.com www.FirstRanker.com | 8 Ot
iii pro
qu | otain the steady
obability that atle
eue length. | state solution
east one unit is | of the system present in the sy | (M/M/1):(∞/Fo
estem and also fi | CFS). Find the nd the expected | Pį | |-----------------------|---|--|---|--|--|------| | toacc
dis
car | Poisson distribut
commodate at m
tribution with m | ion at an averag
naximum::15: car
ean rate 10 per l
wait for testing. | Cars arrive at a perate of 15 cars. The service nour. (a) What is | pollution testing of per hour. The testime per car is the probability expected waiting | sting center can an exponential that an arriving | | | b) "Des | rkov process.
scribe stationary | and non-stationar | ry random proces | | [5+5] | PE | | 11.a) Def
mat | ine stochastic pro
rix said to be reg | ocess and stochas
ular? | stic matrix. Give | examples. When | is a stochastic | | | b)Prov | ve that the mat | rix 0 1 | is the transi | in: ;:
tion probability | matrix of an | F.S | | irrec | lucible Markov c | hain. | ⁷] | | [5+5] | | | F.E. | Pë. | [];;;;;;o | 0000 | P6 | FE | | | | | | • | | | | | F6 | P6 | PE | F6 | P6 | P6 | PE | | P6 | FE | F6 | P6 | P.S. | PE | P6 | | P6 | P6 | PS | F'6 | P6 | PS | F6 | | | | | | | | | | | | Fb | | | PE | **** |