| | | | | | | konski e i e i. | | |--|------------------------|---|---|---|---|------------------------------------|---| | *** | · FXDa | No. 192 & T | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | R15 | *** | | | JA | (Comn | HRU TECHNOI
Semester Exam
CTRONIC DEV
non to EEE, ECE, | inations, Nove
VICES AND C | mber/December
IRCUITS
ETM, MCT) | DERABAD
- 2016
ax. Marks: 75 | | | | | This question paper Part A is compulsor Part B consists of Each question carr | ory which carries of 5 Units. Ans | 25 marks. Answ
wer any one f | ver all questions | in Part A. om each unit. | | | * * * * * * * * * * * * * * * * * * * | | PL | PA | | FIG | (25 Marks) | V * * * * * * * * * * * * * * * * * * * | | | 1.a)
b)
c)
d) | Define static and d
Explain about Zene
Define ripple facto
Explain about volta | er break down.
r. | e of P-N diode. | ericania | [2]
[3]
[2]
[3], | **** | | | f)
g)
h) | What are the applic
What do you mean
Explain about colle
Write about therma | cations of UJT? by early effect? ector feedback bial runaway. | | | [2]
[3]
[2]
[3] | # 0 0 X P 1 | | ************************************** | i)
j). | Mention small sign
Differentiate betwee | een BJT and JFE | JFΕΤ.
Γ | FI | [2] | * # # # # # # # # # # # # # # # # # # # | | | 2.a)
b)
 | Compare the chara-
For a Ge diode, the
forward and reverse | ne $I_0=2\mu A$ and the | ne voltage of 0 | .26V is applied. | Calculate the | * | | | 3.a)
b) | Derive an expression
Explain Avalanche | on for transition o | capacitance of a | | [5+5] | | | IÜ. | 4.a) | Explain the operation diagrams. A diode whose inte 110V (R.M.S) sour i) Peak Load Currentii) DC Load Currentii | rnal resistance is
ce of supply. Cal
nt | 20Ω is to supple culate: | y power to a 100 | ith necessary Ω load from | **** | | K. *** X X X X X X X X X X X X X X X X X | | iii) AC Load Curre
iv) % Regulation fr | om No load to gi | JK | | [\$+5] | 2 A W 4 A W 5 A W 6 A W 6 A W 6 A W 7 A W | | | b) | Explain the operation A 3K Ω resistive to voltage of adequate filter is used along | oad is to be support magnitude and for the support of | olied with a D.C
50Hz frequency
Design the blee | C. voltage of 300
by wave rectifice
der resistance, | ation. The LC | ···· | | A 6 9 4 9 9 9 9 8 8 8 8 8 8 8 | ***** | transformer;; VA rat | ing of transform | er and ray raun | g of diodes. | : [ጳ <i>ቪ</i> ጵህ | × 9 4 | ## www.FirstRanker.com ## www.FirstRanker.com | :::6;ä) | derive Emitter E | fficiency, Tra | nsport factor and | large signal cur | rent gain and | *** | |---|--|--------------------------------------|------------------------------------|--|---|---| | b) | Explain how trans | | | | [5+5] | | | 7.a) | Explain the opera | | | BJT and its in | out and output | | | | characteristics brie
Explain about Pun | efly.
ch through an | nd Base width mod | lulation | [5 +5] | × · · · · · · · · · · · · · · · · · · · | | 8.a) | What is Biasing? methods. | Explain the | need of it. List | out different ty | pes of biasing | | | b) | In a Silicon transis | | | • | | | | | $V_{CC}=9V$, $R_{C}=3K\Omega$
Find the operating | | | | [5+5] | * | | 9.a)
b) | Derive the expressi
Explain in detail at | | | | [5+5] | | | 10.a)
b) | Why we call FET a
For the Common S
i) r _d =100KΩ, R _L =1 | ource Amplif | ier, calculate the v | alue of the voltag | e gain, given | ************************************** | | | ii) If C _{DS} =3pF, dete | | | | y of 1 MHz.
[5+5] | | | out too) | Define DC Drain | | OR | | | | | b) | derive them:
What are the value
12.4mA and -6V re | es of I_D and , | AC Drain Resistan | * * * * * * * * * * * * * * * * * * * | 111111111111111111111111111111111111111 | A | | * | derive them: What are the value | es of I_D and , | | * * * * * * * * * * * * * * * * * * * | are given as | | | * | derive them: What are the value | es of I _D and spectively? | g_m for $V_{GS} = -0.8$ | * * * * * * * * * * * * * * * * * * * | are given as | A | | b) | derive them: What are the value | es of I _D and spectively? | gm for $V_{GS} = -0.8$ | Wif I _{DSS} and V _I | are given as [5+5] | | | b) | derive them: What are the value 12.4mA and -6V re | es of I _D and spectively? | gm for $V_{GS} = -0.8$ | W if I _{DSS} and V ₁ | are given as [5+5] | | | b) | derive them: What are the value 12.4mA and -6V re | es of I _D and spectively? | g _m for $V_{GS} = -0.8$ | W if I _{DSS} and V ₁ | are given as [5+5] | Ħ |