

<u>;</u> :	Con	e:No: 115AG ::::: "JAWAHARLAL NE B. Tech III Year :	HRU TECHNOL I Semester Examin	OGICAL UNIV	ERSITY HY ber/December	R13 DERABAD - 2016
			POWER SY	YSTEMS-II		2010
	Tim	e: 3 hours	(Electrical and Elec	tronics Engineeri	_	Max. Marks: 75
:	****	** *** **			4.	viax. Warks. 75
•	Note	This question paper of	contains two parts A	A and B."	* *** .	4 ***
15		Part A is compulsor consists of 5 Units. A 10 marks and may ha	answer any one full	question from e	all questions i	n Part A. Part B question carries
	;:	e pe	PAR	T - Å; :		
.*	:	******	; :; TAK	* - 4x - ;:	÷ ÷,,,,÷	(25 Marks)
						(== 1/241/215)
	1.a)	List different types of	f conductors.	0		[2]
	b)	What is transposition Define the voltage re				[3]
* '*	d);	Classify the transmiss			**** #* * * * * * *	
į.	e)	State proximity effect		the younge.	: '.,.'	: \.[3] [2]
	f)	What is the effect of		conductors?		[3]
	g)	Classify the types of				[2]
	h)	List the methods for i	mproving string eff	ficiency.		[3]
	<u>i)</u> :	How are HV-cables c Give the expression f	lassified?			[2] [3]
	J)	Give the expression f	or calculating insul	ation resistance.	· · · · ·	: :-[3]
			PAR'	Г - В		
1						(50 Marks)
	2					
	2.a):	A single phase; two v	vire transmission li	ne 20km long, i	s made up of r	ound cöndüctors
		each 0.9cm in diame diameter of a fictitio	ter, separated from	led conductor l	45cm. Calculat	te the equivalent
		the original line. Wha			naving the sam	ie muuctance as
	b)	What are bundled co			of bundled co	onductors, when
	,	used for overhead line		8-1		[5+5]
	****		[,, O	R E		
, 19	3.a)	"Briefly discuss the va	rious types of cond	uctor mäterial us	sed for over he	ad transmission
	7.	lines.	6			
	b)	Discuss the concept of		distance. How i	is this concept	
		inductance of compos	me conductor line?			[5+5]
	4	Derive the expression	s for registation an	d efficiency of s	short transmi	ssion line: Draw
	~ · · ·	required cicuit and ph		a organization of t	. midre dimini	10]
•		-1 Pro-	O]	R		[10]
	5.	What is an equivalent			rive expression	n for parameters
		of this circuit in terms	of line parameters			[10]
15			1			

www.FirstRanker.com www.FirstRanker.com

b) "Dete havir	ain surge impedar rmine the auxilia ng resistance, ind 0.009µF respectiv	ry constants of a uctance and capa ely.				P6			
b) An cend of	t is a travelling v	sion line with su ort circuited and	irge impedance at the other end	400 ohms is 300 a source of 11	kw long. One kV is suddenly	P.S			
Nam b) A tra weig The	t are disadyantage e different types on unsmission line co hing 1118 kg/km conductor has an	of line supports wonductor with dia has a span of 20 ultimate tensile s	with their place of meter 14.5 mm, 00 meters. The stress of 42 kg/r	of use. cross-sectional assupporting structure nm² and allowab	rea of 125 mm ² ares being level.	P6			
ii) Sa ii) Sa Also	ceed 1/4 th of ulting in still air. ag with a wind precalculate the very gm/c.c.	essure of 60 kg/m ertical sag und	and an ice coa	ting of 10 mm.	usity of ice as [4+6]	P6			
9 a): Explain the factors affecting the mechanical design. Determine the maximum sag of an overhead line conductor having a diameter of 19mm weighs 0.85 kg/m. The span length is 250 meters; wind pressure is 40 kg/m² of projected area with ice coating of 13 mm. The ultimate strength of the conductor is 8000 kg, the factor of safety is 2 and ice weighs 910 kg/m³. [4+6]									
b) A 12 the c	ribe briëfly some 5 kV single-core ore and the electr e most economica	cable has an ou ic field strength l (optimal-ratio)	itside diameter of that must be wit configuration.	of 8 cm. Determi		P6			
b) A sin	uss the methods on the core is a second seco	f grading cables. long cable has a If the resistivity	OR Why are they n a conductor rad of dielectric is	ot used generally lius of 1.3cm an s 7×1012 ohm-m	? d an installation a, determine the [5+5]	Pé			
P6	P6	00	O00	P6	P6.	P6			
PE.	Pë	P6	P6	PG	FG.	F6			