

AG	AG AG AG AG AG AG	1									
	Code No: 132AA R16										
JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech I Year II Semester Examinations, August/September - 2017											
Λ	ENGINEERING PHYSICS – II										
A(J	Time: 3 hours (Common to EEE; ECE, CSE, EIE, IT) Max. Marks: 75	1									
	Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.										
AG	AG AG ART-AAG AG (25 Marks)	F									
AG	1.a) Explain Heisenberg's uncertainty principle. b) Give significance of wave function. c) What is direct and indirect band gap semiconductors. Explain the I-V characteristics of PN junction diode. Define Electric susceptibility and polarizability. ([2] ([3] ([2] ([4] ([4] ([4] ([4] ([4] ([4] ([4] ([4	/									
AG	$\triangle G \triangle G \triangle G$ $(50 Marks)$	/									
	2.a) Explain de-Broglie hypothesis. Explain G.P. Thompson's experiment in support of this										
AG	hypothesis. b) Write the conclusion of Kronig-Penny model. Using this model show that the energy spectrum of an electron contains number of allowed states separated by forbidden bands. OR OR	4									
	3.a) Describe the Davisson and Germer's experiment and explain how it enabled the verification of wave nature of matter.										
	b) Derive time independent schrodinger's wave equation for a free particle. [5+5]										
AG	4.a) Calculate the carrier concentration in n-type semiconductor. b) Explain the energy level diagram of a PN junction diode and the energy level diagram of biased PN junction: OR	_									
	5.a) Calculate the carrier concentration in intrinsic semiconductor.b) Explain the diode equation. [5+5]										
·Д(С	AG AG AG AG AG	_									

	AG	_	(0)	AG	AG	AG	AG	AG	A			
		 6.a) Derive a relation between electronic polarization and electric succetibity of the dielectric medium. b) Derive Clausius-Mosotti equation. [5+5] 										
	AG	7.a) <u>/</u> b)	What is in structure. Explain b	nternal field? De	oribe Lorentz m	ricity and ferro-e	te the internal fie	eld of a cubic [5+5]	<u></u>			
		 8.a) What is the origin of Magnetic moment? Define and derive an expression for Bohr Magnetron. b) Explain superconductivity and give few properties of superconducting material. What is 										
	AG	- /	flux quant Explain H	tization and coop	er pairs? OR pased on domain	theory.	AG		A			
		10.a) b)	Evolain co	nanomaterials. Honstruction and v	vorking of SEM			[5+5]				
	AG	11.a)_ .b)	Explain C Explain co	VD and Ball mil onstruction and v	ling method for s vorking of TEM.	synthesis of nano	materials.	<u></u>	A			
	AG	Δ		AG	AG	^-	AG	AG	A			
	AĞ	Δ	G	AG	AG	AG	AG	AG.	A			
	AG	Д	G	AG	AG	AG	AG	AG	A			
ě	AG	A		AG	AG	AG	AG		<u> </u>			