www.FirstRanker.com

www.FirstRanker.com

	AG AG AG AG AG AG	
	Code No: 124AB JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year H Semester Examinations, May - 2017 ELECTRICAL MACHINES - H	
AG	Time: 3 Hours (Electrical and Electronics Engineering) Max. Marks: 75	/
	Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.	
AG	PART- A 1.a) Explain the need of finding Voltage regulation of a transformer. [2] b) Explain the significance of Voltage transformation Ratio (K) of a transformer. [3] c) Distinguish between Power and Distribution transformers. [2] d) What are hysteresis and eddy current losses and how can we reduce them? [3]	A
AG	e) Explain the importance of Polarity test in transformer. [2] f) What is the advantage of V – V connection? [3] g) List the applications of three phase induction motor. [2] h) Briefly explain the phenomena of Crawling in Induction motor. [3] i) How come the large rating Induction motors can be started? [2] j) Explain in brief the different methods of Speed control of Induction motors. [3]	1
AG	PART-B 2.a) Derive the emf equation of a transformer. b) Draw and explain the total equivalent circuit of the transformer referred to Primary. [5+5]	/
	OR 3.a) Draw the no-load and ON-load phasor diagrams for lagging p.f of 1-φ Transformer.	
,4G		1
,4G	 3.a) Draw the no-load and ON-load phasor diagrams for lagging p.f of 1-φ Transformer. b) A 4400 V, 50 Hz transformer has a hysteresis loss of 1250 W, eddy current loss of 2050 W and full load copper loss of 4000 W. If the transformer is supplied at 6600 V, 75 Hz. What will be the losses? Assume that the full – load current 	<u> </u>
AG AG	 3.a) Draw the no-load and ON-load phasor diagrams for lagging p.f of 1-φ Transformer. b) A 4400 V, 50 Hz transformer has a hysteresis loss of 1250 W, eddy current loss of 2050 W and full load copper loss of 4000 W. If the transformer is supplied at 6600 V, 75 Hz. What will be the losses? Assume that the full — load current remains the same. [5+5] 4.a) Explain the necessity of performing the O.C and S.C tests of a single phase 	<u> </u>
AG AG	 3.a) Draw the no-load and ON-load phasor diagrams for lagging p.f of 1-\$\phi\$ Transformer. b) A 4400 V, 50 Hz transformer has a hysteresis loss of 1250 W, eddy current loss of 2050 W and full load copper/loss of 4000 W. If the transformer is supplied at 6600 V, 75 Hz. What will be the losses? Assume that the full - load current remains the same. [5+5] 4.a) Explain the necessity of performing the O.C and S.C tests of a single phase transformer. b) A single - phase 200 KVA transformer has an efficiency of 95 % on full - load at 	<u></u>

AC	A	<u>.</u>	AC	AG	AG	AG	AG	/			
AG	b) A pr \(\lambda \ 1,	three pharimary and Ω and se	se 1000 KV. star connec condary resis	A, 6600/1100 V ted on the seco stance/phase is	7 transformed is indary. The print 0.025Ω , Determi	delta connected tary resistance/place the efficiency the iron loss is 1	on the hase is on full	<u> </u>			
AG	 7.a) Explain the conditions to be fulfilled for paralleling three –phase transformers. b) Two single phase electric furnaces A and B are supplied at 220V from a three phase, 1100 V supply by means of a Scott – connected transformer combination. If the total output is 600 KW at 0.6 power factor lagging, determine the currents in the winding and transformation ratio of each transformer. [5+5] 										
· .	b) A wi	50 H.P, 6- ith a rotor cuiting gea	pole, 50 Hz current of 4	, slip ring induc 0 A. Allowing W for mechanica	tion motor runs a 300 W for cop	nning conditions. at 960 rpm on fu per loss in the s resistance per ph	ll load hort –	/			
AU	9.a) Explain the constructional details of the three phase Induction motor. b) A 3- phase, 6-pole, 50 Hz induction motor has 160 N-m as it's useful full-load torque. The rotor emf is observed to make 90 cycles per minute. Calculate: i) Motor output in KW ii) Copper losses in rotor iii) Motor input iv) Efficiency if mechanical torque lost in friction and windage is 20 N-m and stator losses are										
AG	800 W. 10.a) Explain the working of Induction generator. b) Explain the constructional details and working of star-delta starter used in 3-ф I.M. [5+5]										
OR 11. Draw the circle diagram of a 3-phase I.M. Explain how do you estimate the performance characteristics of 3-φ I.M. [10]											
	•				AG	AG	AG	_			
				ooOoo-							
AG	<u>A</u> (<u> </u>	AG.	AG	AG	AG	AG	_			
AG	AC) /	\G	AG	AG	AG	AG	A			