

performance?

www.FirstRanker.com

www.FirstRanker.com

144

R13 Code No: 126AN JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech III Year II Semester Examinations, May - 2017 DIGITAL COMMUNICATIONS (Electronics and Communication Engineering) Max. Marks: 75 Time: 3 hours **Note:** This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions. PART - A (25 Marks) [2] Compare the performance of PCM and DM system. 1.a) [3] b) What is slope overload distortion? Explain. Write the expression for baud rate of BPSK system. [2] c) Explain advantages of coherent digital modulation schemes. [3] d) Sketch the wave form of the FSK signal for the input binary sequence 1100100010. [2] [3] f) Define entropy and conditional entropy. [2] Define code rate of block code. g) [3] Mention various types of errors caused by noise in communication channel. h) [2] Define processing gain and jamming margin i) Explain the generation of PN sequence. [3] j) PART - B (50 Marks) A voice frequency signal band limited to 3kHz is transmitted with the use of the DM 2.a) system. The pulse repetition frequency is 30,000 pulses per second, and the step size is 40mV. Determine the permissible speech signal amplitude to avoid slope overload. Derive the expression for overall SNR in a ADM system, [5+5]In a binary PCM system, the output signal to quantizing noise ratio is to be held to a 3.a) minimum of 40dB. Determine the number of required levels and find the corresponding output signal to quantization noise ratio. Explain the modulation and demodulation procedure in DPCM system. [5+5] b)

Explain non coherent detection method of binary frequency shift keying scheme. [5+5]

OR

5.a) Explain coherent detection of PSK signals and derive probability of error.

Differentiate coherent and non-coherent detection techniques. [5+5]

Explain frequency shift keying. Describe coherent detection of FSK signals. What should be the relationship between bit-rate and frequency-shift for a better

				UP			
6.a) b)	Apply Shann	t error probabilit on-Fano coding ability [P]=[1/4,	procedure of M=	= 2 and M=3 [x]=	$[X_1, X_2 \ X_3 \ X_4, X_5]$	5, X ₆ , X ₇ , [5+5]	
7.a) b)	Compare code efficiency of Shanon Fano coding and Huffman coding when five messages have probabilities m1=0.4, m2=0.15, m3=0.15, m4=0.15, m5=0.15. Obtain the probability of bit error for coherently detected BPSK.					e source [5+5]	
8.a)	we transmit 1	either a 1 or a 0, 1111 or 00000, the same bit 2t+1	then 2 errors can	be corrected. (iii) Show that in ge	v that if eneral if	
(b) 9.a)	we transmit the same bit 2t+1 times we can correct upto t errors. What are code tree, code trellis and state diagrams for convolution encoders? OR Design the encoder for the (7, 4) cyclic code generated by G(p)=p³+p²+1 and also						
b)	verify the ope Derive the ste properties of	eration for any m eps involved in go syndrome.	essage vector. eneration of linea	ar block codes. D	efine and explair	the [6+4]	
b)	Derive the n diagram and o Write a note of		S techniques. D	Praw the transmi	tter and receive	r block	
11.a) b)	Explain the ac Discuss the fr	dvantages and ap equency hopping	OR pplications of spreg spread spectrum	ead spectrum mo	dulation. tail.	[4+6]	
	UP.		00000				
	UP						
	The second secon			UP			