| AG.                        | AG AG AG AG AG                                                                                                                                                                                                                                                           | AC                                     |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| r; 🖁 Cod                   | le No: 118DV                                                                                                                                                                                                                                                             | 3                                      |
|                            | JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERA                                                                                                                                                                                                                         | BAD                                    |
| AG.                        | B. Tech IV Year II Semester Examinations, May - 2017  PRESTRESSED/CONCRETE STRUCTURES  (Civil Engineering)  Max. M                                                                                                                                                       |                                        |
|                            | e: This question paper contains two parts A and B.                                                                                                                                                                                                                       | arks: 75                               |
|                            | Part A is compulsory which carries 25 marks. Answer all questions in Part consists of 5 Units. Answer any one full question from each unit. Each question marks and may have a, b, c as sub questions.                                                                   |                                        |
| a yerra,                   | Assume any Data suitably if found necessary. Use of relevant IS Codes is p                                                                                                                                                                                               | ermitted                               |
|                            | $\Delta (A - A - A - A - A - A - A - A - A - A $                                                                                                                                                                                                                         |                                        |
|                            | PART-A                                                                                                                                                                                                                                                                   |                                        |
|                            |                                                                                                                                                                                                                                                                          | (25 Marks)                             |
| 1.a)                       | Distinguish between Pre-tensioning and Post-tensioning.                                                                                                                                                                                                                  | [2]                                    |
| b)                         | Explain the principle of prestressing.                                                                                                                                                                                                                                   | [3]                                    |
| c)                         | What is curvature effect?                                                                                                                                                                                                                                                | [2]                                    |
| $\wedge$ $\wedge$ $\wedge$ | Explain the total amount of losses allowed in the design of pre-tensioning members that the assumptions made in the analysis of prestressed concrete flexural mem                                                                                                        |                                        |
| A 7 5                      | Explain the concept of load balancing,                                                                                                                                                                                                                                   | [3]                                    |
| g)                         | What are the characteristics of an end block?                                                                                                                                                                                                                            | [2]                                    |
| h)                         | Explain the salient features of Rowe's method of analysis of an end block.                                                                                                                                                                                               | [3]                                    |
| i)                         | What is the influence of differential shrinkage on composite prestressed                                                                                                                                                                                                 |                                        |
|                            | members?                                                                                                                                                                                                                                                                 | [2]                                    |
| j)                         | Explain the importance of control of deflections of flexural members.                                                                                                                                                                                                    | [3]                                    |
| AG                         | PART-B                                                                                                                                                                                                                                                                   |                                        |
|                            | S                                                                                                                                                                                                                                                                        | 50 Marks)                              |
| 2.a)                       | Explain the advantages of prestressed concrete.                                                                                                                                                                                                                          |                                        |
| b)                         | Explain the Gifford- Udall system of prestressing.                                                                                                                                                                                                                       | [5+5]                                  |
| · ~ 3 a)                   | Explain the limitations of prestressed concrete.                                                                                                                                                                                                                         | A prima                                |
| 3.a)<br>b)                 | Explain the Lee McCall system of prestressing.                                                                                                                                                                                                                           | [5/45]                                 |
| 4.a)                       | Explain the different types of losses of prestress in pre-tensioned members.                                                                                                                                                                                             |                                        |
| b)                         | A simply supported post-tensioned concrete beam of span 10 m ha                                                                                                                                                                                                          |                                        |
|                            | 200 mm × 450 mm is subjected to an initial prestressing force of 300 kN ap                                                                                                                                                                                               |                                        |
|                            | constant eccentricity of 75 mm by tendons of 250 mm <sup>2</sup> . Find the total loss of properties tendons using the following data: $E_S = 2 \times 10^5 \text{ N/mm}^2$ , $E_C = 35 \text{ kN/mm}^2$ , and $E_C = 35 \text{ kN/mm}^2$ , $E_C = 35 \text{ kN/mm}^2$ . |                                        |
| $\Lambda \cap \Lambda$     | $4 \sin \pm 3$ mm, creen coefficient of concrete = 1.5 shrinkage of concrete = 0                                                                                                                                                                                         | 0002 and                               |
| $A \setminus Ju$           | slip = 3 mm, creep coefficient of concrete = 1.5, shrinkage of concrete = 0.                                                                                                                                                                                             | 14+6                                   |
|                            | OR                                                                                                                                                                                                                                                                       | C - 3 -                                |
| 5.a)                       | Explain the various losses of prestress in post-tensioned members.                                                                                                                                                                                                       |                                        |
| b)                         | Determine the total loss of prestress in a simply supported pre-tensioned concrete                                                                                                                                                                                       |                                        |
|                            | span 12 m and cross-section 250 mm × 500 mm. The beam is pre-stressed with                                                                                                                                                                                               | 900 kN at                              |
|                            |                                                                                                                                                                                                                                                                          |                                        |
| A Semisimon                | transfer. The steel cable has a cross-sectional area of 750 mm <sup>2</sup> and has a straig                                                                                                                                                                             | ht profile                             |
|                            | with an eccentricity of 150 mm. Use M40 grade of concrete and $E_S = 2 \times 10^{\circ}$                                                                                                                                                                                | N/mm <sup>2</sup> .                    |
|                            | transfer. The steel cable has a cross-sectional area of 750 mm <sup>2</sup> and has a straig with an eccentricity of 150 mm. Use M40 grade of concrete and E <sub>S</sub> = 2×10 [Explain the Lee Met all system of prestressing.]                                       | ht profile  N/mm <sup>2</sup> .  [4+6] |

## www.FirstRanker.com

## www.FirstRanker.com

Design an I-section for a simply supported post-tensioned concrete beam of span 12 m б. subjected to an imposed load of 15 kN/m. Adopt the compressive stresses in concrete at transfer as 18 N/mm<sup>2</sup> and 15 N/mm<sup>2</sup> at working load. Assume 20 % losses in prestress and tensile stresses are not allowed in concrete. OR Design an I-section for a simply supported post-tensioned concrete beam of span 18 m subjected to an imposed load of 25 kN/m over its entire span. The permissible tensile stress in steel is 1250 N/mm<sup>2</sup> and the permissible stresses in concrete are: : 20 N/mm<sup>2</sup> (Compression) and 2.5 N/mm<sup>2</sup> (Tensile) : 15 N/mm<sup>2</sup> (Compression) and 1.5 N/mm<sup>2</sup> (Tensile) [10]At working load A prestressing force of 400 kN is to be transmitted through a distribution plate 200 mm × 150 mm, the centre of which is located at 150 mm from the bottom of an end block of section 200 mm × 400 mm. Determine the position and magnitude of maximum tensile stress on a horizontal section passing through the centre of the distribution plate. OR Design an end block of a prestressed concrete beam of section 200 mm × 400 mm to 9. transmit the prestressing force of 400 kN by a distribution plate 200 mm× 200 mm concentrically located at the ends. Also determine the maximum bursting force and the maximum tensile stresses. A simply supported pre-tensioned concrete beam of cross-section 200 mm× 350 mm has 10. an effective span of 8 m, is prestressed by tendons with their centroid is 150 mm from the bottom of the beam. The initial prestressing force in tendons is 400 kN. The beam is incorporated in a composite T-beam by casting a top flange of width 450 mm and thickness 60 mm./If the composite/beam is subjected to a live load of 15/kN/m², determine The resultant stresses developed in the precast and cast in-situ concrete assuming the pretensioned beam is propped. Adopt the loss of prestress as 20% and the modulus of elasticity of concrete in precast and cast-in-situ is the same. Determine the maximum short-term and the long term deflections of a pre-tensioned 11. concrete beam of section 250 mm×500 mm has an effective span of 15 m. The beam is prestressed by a parabolic cable carrying initial force of 600 kN at/transfer. The cable is concentric at the supports and has an eccentricity of 150 mm at its mid-span. The beam is subjected to uniformly distributed live load of 15 kN/m in addition to two concentrated loads of 50 kN each at quarter span points respectively. Adopt M40 grade of concrete, loss of prestress as 20%, creep coefficient is 2 and the permanent load of the transverse load is 25%. [10] elasticity of concrete or precast and cast-in-situ is the same

www.FirstRanker.com and the season and

40.15 I Nan Graddina