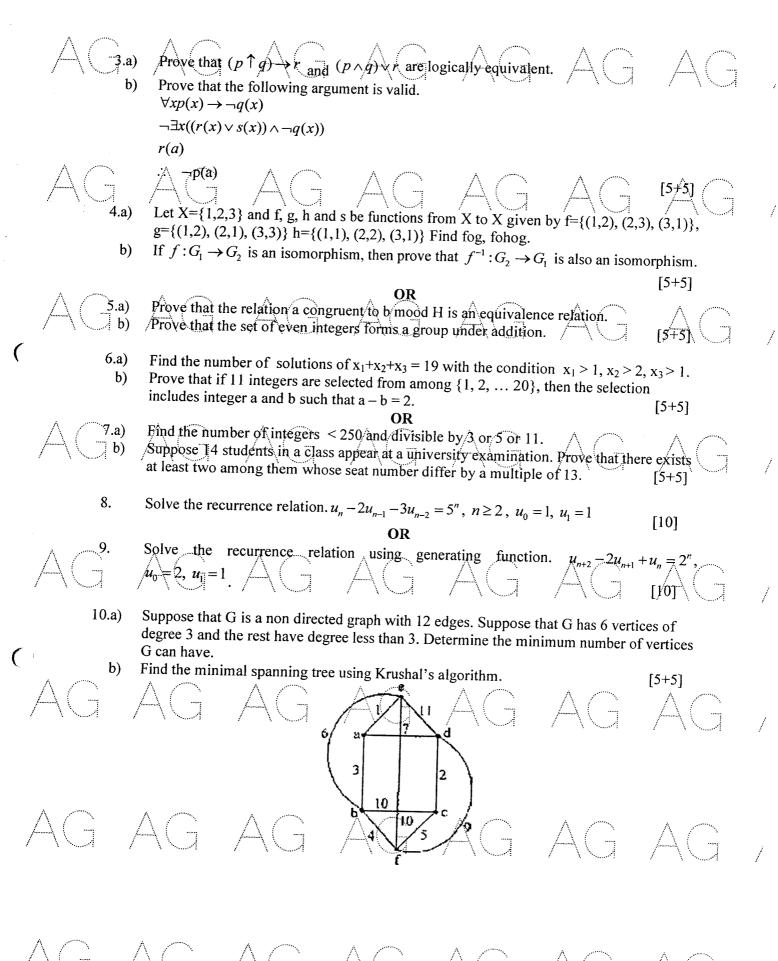
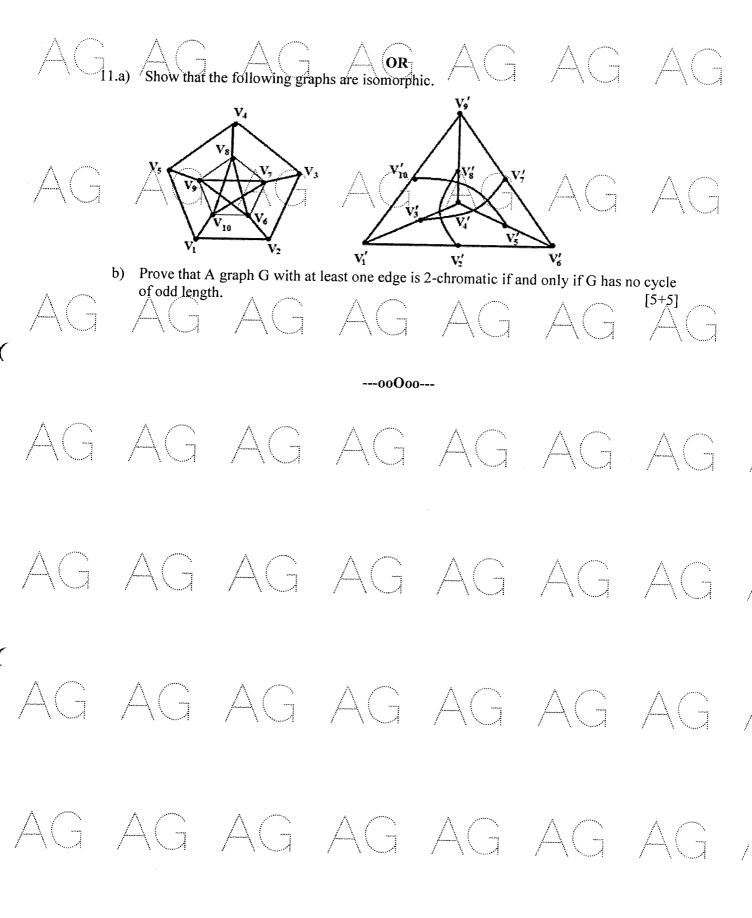
www.FirstRanker.com


www.FirstRanker.com


Code No: 133BG JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech II Year I Semester Examinations, November/December - 2018 MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE (Common to CSE, IT)
Time: 3 Hours Max. Marks: 75
Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.
PART- A
1.a) Find the negative of $p \rightarrow q$. Test the validity of the following argument $p \land r \rightarrow \neg q$, $\neg q \rightarrow r$: $p \land r \rightarrow r$ (25 Marks) [2] \(\begin{array}{c} (25 \text{ Marks}) & \qu
c) If $f(x) = x^2 - 6 = y$, then find $f^{-1}(y)$.
d) If $f:G_1 \to G_2$ is a homorphism and $a \in G$ then prove that $[f(a)]^{-1} = f(a^{-1})$
How many 5 digit numbers are possible, which are greater than 40000 with the digits $1/2$, 3 , $4/5$. Find the number of positive integer solutions of $x + y + z = 12$. Solve the recurrence relation $u_{n+2} - u_{n+1} - 6u_n = 0$.
h) Find the generating function of the sequence 1, 3, 3^2 , 3^3
i) If the adjacency matrix of the Graph is $ \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} $, then draw the graph. [2] j) If G is a k regular graph with 18 edges and the order of the graph is 9. Find the value of k. [3]
PART – B
2.a) Test the validity of the following argument. If I study, I will not fail in the examination. If I do not watch TV in the evenings, I will study. I failed in the examination.
Therefore I must watch TV in the evenings. b) Prove that the following argument is valid. $\neg \exists x (p(x) \land q(x))$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

www.FirstRanker.com

www.FirstRanker.com

