www.FirstRanker.com www.FirstRanker.com

/ / >-/-/ 1	No: 133AP							
JÁWAHARLAL NEHRU TECHNOLÓGICAL ÚNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November/December - 2018								
ELECTROMAGNETIC FIELDS (Electrical and Electronics Engineering)								
Time	3 Hours Max. Marks: 75							
A Note:	Part A is compulsory which carries 25 marks. Answer all questions in Rart A Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.							
PART- A								
(1.a) (b) (c) (d) (e)	Define electro static field and mention any two sources. Find the potential at $R_A = 5m$ with respect to $R_B = 15m$ due to point change $Q = 500 \mu c$ at the original and zero reference at infinity. What are Conductors and Insulators? Give examples. Derive Ohm' law in point form. Deduce the Relation between magnetic flux, magnetic flux density. [2]							
f) g) h) i) j)	Find the magnetic field intensity due to a current carrying conductor with finite length. Explain Lorentz force equation. Derive Neuman's formula for mutual inductance. State Faraday's law of electromagnetic induction. Determine the e.m.f induced about the path r=0.5, z=0, t=0. If B=0.01sin377t. [3] [3] [3] [3] [3] [3] [3] [3							
PART-B								
△ (square, side 20cm. determine the electric field intensity at the vacant corner point of							
b)	the square. State and explain Maxwell's first law. [5+5]							
(
3.a) (b)	What is an electric dipole? Obtain expression for torque experienced by an electric dipole in a uniform electric field. Derive the expression for Potential gradient.							
	OR What is an electric dipole? Obtain expression for torque experienced by an electric dipole in a uniform electric field. Derive the expression for Potential gradient. Derive the expression for the energy stored in the charged condenser. The capacitance of a parallel plate condenser is 0.2μF. Potential difference between the plates is 2V. Calculate the energy stored by the charged condenser. [5+5]							
(a) b) 4.a) b)	OR What is an electric dipole? Obtain expression for torque experienced by an electric dipole in a uniform electric field. Derive the expression for Potential gradient. Derive the expression for the energy stored in the charged condenser. The capacitance of a parallel plate condenser is 0.2μF. Potential difference between							
(a) b) 4.a) b)	OR What is an electric dipole? Obtain expression for torque experienced by an electric dipole in a uniform electric field. Derive the expression for Potential gradient. Derive the expression for the energy stored in the charged condenser. The capacitance of a parallel plate condenser is 0.2μF. Potential difference between the plates is 2V. Calculate the energy stored by the charged condenser. [5+5] OR							

www.FirstRanker.com

www.FirstRanker.com

State Ampere's circuital taw and prove the same. In the region 0 < r < 0.5m, in cylindrical co-ordinates, the current density is J = 4.5e ^{-2r} â _z (A/m²) and J = 0 elsewhere. Use Amperes law to find H. [5+5] 8.a) Derive an expression for magnetic field strength H, due to a current carrying conductor of finite length placed along the y-axis, at a point P in x-z plane and fistant from the origin. What is scalar magnetic potential? Give its limitations. OR 9.a) A toroid with cross section of radius 2cm has a silicon steel core of mean length 28cm and an air gap of length 1mm. Assume the air-gap area is 10% greater than the adjacent core and find the mmf required to establish an air-gap flux of 1.5 mwb. Explain the concept self and mutual inductances. [5+5] OR 11.a) Generalize Ampere's law for time varying fields. In a material for which σ = 5.0 s/m and ∈ r = 1, the electric field intensity is E = 250 Sin1010t (V/m). Find the conduction and displacement current densities and the frequency at which they have equal magnitudes. [5+5]									
		/ \ <u>\</u>	ooOoo				÷		
AG	AG	AG	AG	AG	AG	AG	/		
AG.	AG	AG	AG	AG	AG	AG	/		
Á()	AG	AG	AG	AG	AG	AG	/		
46	AG	AG	AG	AG	AG	AG	/		