www.FirstRanker.com

www.FirstRanker.com

R16 Code No: 134AP JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year II Semester Examinations, April - 2018 DATABASE MANAGEMENT SYSTEMS (Common to CSE, IT) Time: 3 Hours Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions. (25 Marks) How to represent the strong Entity set and Weak entity set in ER-Model? [2] 1.a) [3] Explain about various integrity constraints in relational model. b) What are the SQL statements are used to retrieve and modify the database? [2] c) Let R = (ABC) and S=(DEF) let r(R) and s(S) be relations on schema R and S. Give an d) expression in the Domain relational calculus that is equivalent to each of the following. [3] ii) $\prod_{A,F,(\sigma_{C=D}(rXs))}$ i) $\sigma_{B=25}(\mathbf{r})$ [2] What is schema refinement? e) [3] Define Multi valued dependencies and join dependency. f) [2] What is serilizabuilty? g) [3] Explain Failure with loss of nonvolatile storage. h) [2] What is primary and secondary indexing? i) What is the difference between indexing and hashing? j) PART-B (50 Marks) [10] Give an overview of database architecture. 2. Give an overview of database languages - DDL and DML. 3.a) What are speciality databases? Explainb) Explain the fundamental operations in relational algebra with examples. 4.a) What aggregate operators does SQL support? Explain with examples. [5+5]b) What is trigger? Explain how to implement triggers in SQL? 5.a) Explain the following Operators in SQL with examples: b) iii) EXCEPT y) UNION. ii) IN i) SOME

www.FirstRanker.com www.FirstRanker.com

	AG	AG	AG	AG	AG	AG	$A \cup J$	
	6.a) b) 7.a) b)	What are the Compute the scheme. R(A List the cano	n mean by scheme e problems caused e closure of the A,B,C,D,E,F,G,H) didate keys of R. F, 5NF normal for	OR following set of AB→C, B	and decomposition of functional de D→EF, AD→G,	on of relation?	[5+5]	A
e	8.a) b) 9.a) b)	Give an over Explain abor Explain abor	saction? Explain to rview of validation the Multiple grund tremote backup arison of various	on based protocol OR anularity Concur system.	rency Control pro	oto¢ol\()	[5+5] (5+5)	A
	10.a) b)) Describe the	e Insertion and De Extendable hashing perations?	eletion Operation OR	s in B+ trees. of buckets? Hov	w does it handles	[5+5] the insert [10]	Δ
	AG	AG	AG	AG	AG	AG	AG	Δ
	AG	AG	AG	AG	AG	AG	AG	A
	AG	AG	AG	AG	AG	AG	AG	A

AG AG AG AG AG AG A