www.FirstRanker.com

www.FirstRanker.com

AG	AG AG AG AG AG	/
AG	Code No: 134CF JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech II Year II Semester Examinations, April - 2018 SWITCHING THEORY AND LOGIC DESIGN (Common to EEE, ECE, MCT) Max. Marks: 75	_
AG	Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions. PART A	_
AG	1.a) What is self complementing code? Give example. [2] b) State and Prove Demorgan's theorem. [3] c) What are Hazards? List their types. [2] d) Design 2 × 1 Multiplexer with neat logic diagram. e) Write the characteristic table of JK Flip flop. [3] g) What is switch tail ring counter? [4] h) What is a Ring Counter? What are applications of Ring counters? [5] i) What is an ASM Block? [6] [7] [8] [9] [9] [10] [11] [12] [13] [13] [14] [15] [16] [17] [18] [18] [19] [19] [10] [10] [11] [12] [13] [13]	4
AG	2.a) i) Convert the given Octal number (2564. 603) ₈ to Hexadecimal Number. ii) Given that (81) ₁₀ = (100) _b , Find the value of b. b) Encode data bits 1101 into 7 bit even parity Hamming Code. OR [5+5]	_
AG	3.a) Prove that AB'C + B + BD'+ ABD'+ A'C = B + C. b) Simplify the following expression F = AB'+ABD+ABD'+A'C'D'+A'BC' and implement with NAND gates. [5+5]	_
AG	 4.a) Design a code converter that converts BCD messages into Excess-3 code. The converter has four input lines carrying signals labeled w, x, y and z and four output lines carrying signals f1, f2, f3, and f4. b) Simplify the following Boolean expression using K- map and implement them with NOR logic gates F(A,B,C,D) ≠ Σ m (1,3,7,11,15) + d(0,2,5) OR Solution and explain 3 to 8 decoder with recovery tout table and logic discourse. 	<u> </u>
AG	5.a) Design and explain 3 to 8 decoder with necessary truth table and logic diagram. b) Write short notes on Hazards and Hazard free relations. [5+5]	