www.FirstRanker.com

www.FirstRanker.com

AG	AG AG AG AG AG	1
Cod	e No: 135AF JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech III Year I Semester Examinations, November/December - 2018 DESIGN AND ANALYSIS OF ALGORITHMS (Common to CSE, IT) Max. Marks: 75	_
Note	Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions. PART A (25 Marks)	_
1.a) b) c) d) e) f)	Write an algorithm to find the number of digits in the binary representation of a positive decimal integer. How can we measure an algorithm's running time? What is a set? List the operations that can be performed on it. Give brief note on graph coloring. State the Job – Sequencing Deadline Problem. Find an optimal solution to the knapsack instance n=4 objects and the capacity of knapsack m=15, profits (10, 5, 7, 11) and weight are (3, 4, 3, 5). [3]	L
g) h) i) j)	What is Travelling Sales Man Problem? Give the statement of Reliability design problem. State the methodology of Branch and Bound. Define Bounding Function? Give the statement of 0/1 Knapsack FIFO BB. [2] [3] [3]	4
	PART - B (50 Marks)	
(2.a) b) 3.a)	Explain Recursive Binary search algorithm with suitable examples. Distinguish between Merge sort and quick sort. OR What is stable sorting method? Is Merge sort a stable sorting method? Justify your answer.	_
b)	Explain partition exchange sort algorithm and trace this algorithm for n =8 elements: 24,12, 35, 23,45,34,20,48. [5+5]	
△ J.	Write and explain the algorithm of Bi connected components with an example. Give the solution to the 8-queens problem using backtracking. [10]	_
6.	What is Minimum cost spanning tree? Explain an algorithm for generating minimum cost Spanning tree and list some applications of it. [10] OR	
7.a) b)	Explain the greedy technique for solving the Job Sequencing problem. Write with an example of Prim's algorithm. [5+5]	_

www.FirstRanker.com

www.FirstRanker.com

Discuss the time and space complexity of Dynamic Programming traveling sales person 8.a) algorithm. [5+5] Write an algorithm of matrix chain multiplication. b) OR [10] With the help of suitable example explain the all pairs shortest path problem. Give the 0/1 Knapsack LCBB algorithm. Differentiate between deterministic and non deterministic algorithm. [5+5]b) Draw the portion of state space tree generated by LCBB for the 0/1 Knapsack instance: 11. n = 5, (p1,p2,...,p5) = (10,15,6,8,4), (w1,w2,...,w5) = (4,6,3,4,2) and m=12. And also find an optimal solution of the same [40](---ooOoo---