www.FirstRanker.com

www.FirstRanker.com

R13 Code No: 117CD JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech IV Year I Semester Examinations, April/May - 2018 DATA WAREHOUSING AND DATA MINING (Computer Science and Engineering) Time: 3 Hours Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, bac as sub questions. (25 Marks) [2] List out the operations of OLAP. 1.a) [3] What is fact table? Write its uses. b) [2] Define discretization. c) [3] What is predictive mining? Explain it briefly. d) [2] Write the purpose of Apriori algorithm. e) [3] Define support and confidence measure. f) [2] What is boosting? g) [3] Define decision tree. h) [2] Write the strengths of hierarchical clustering. i) [3] Compare agglomerative and divisive methods. j) (50 Marks With a neat sketch, Explain three tier architecture of data ware housing. 2.a) [5+5]Explain various data warehouse models. b) OR Write a note on 3. a) Relational OLAP b) Multi dimensional OLAP. Discuss in detail about the steps of knowledge discovery? 4.a) Write a note on subset selection in attributes for data reduction. [5+5]b) OR Explain various data mining tasks. 5.a) Discuss briefly about data cleaning techniques. b) Write FP- growth algorithm. 6.a) Explain how association rules are generated from frequent item sets. [5+5]b) Explain the procedure to mining closed frequent data item sets. 7.aExplain, how can you improve the performance of Apriori algorithm. [5+5]

www.FirstRanker.com www.FirstRanker.com

AC AC AC AC AC AC AC AC

	AU								
	8.a) b) (9.a) b)	What is Baye Write a note a Write k-neare Write decision	sian belief network attribute selection est neighbor classion tree induction a	rk? Explain in de measures. OR fication algorithm	tail.	eristics, ([5+5] [5+5]	A	
	10.a) b)	[5+5]							
	△ (11.a) b)	Write K-mean Write the key	ns clustering algo issue in hierarch	rithm. ical clustering al	gorithm.	AG	[5,45]	A	
ooOoo									
	AG	AG	ÅG	AG	AG	AG	AG	A	
	AG	AG	AG	AG	AG	AG	AG	Δ	
	AG	AG	AG	AG	AG	AG	AG	A	
	AG	AG	AG	AG	AG	AG	AG	A	

AG AG AG AG AG AG A